
6CCS3PRJ Final Year
Automating OpenAI’s GPT-2 Text

Generating Language Model

Final Project Report

Author: Danyaal Khan

Supervisor: Prof. Mischa Dohler

Student ID: 1709353

April 21, 2020

Abstract

Language models are getting better and better at generating paragraphs of coherent text

through the use of groundbreaking work in machine learning. The ability of these models

to produce the next word of a given input can be used to generate samples of any size, allowing

them to perform common natural language processing tasks including but not limited to an-

swering questions, completing text, reading comprehension, and summarising text. They can

also be used to assist in speech recognition, auto-correction, optical character recognition, and

keyboard suggestions.

OpenAI’s GPT-2 is a large language model trained on 8 million web pages giving it the

potential to generate high quality samples. Generated samples can be made more suitable for a

given context by finetuning the model using a relevant dataset. However making use of GPT-2

and other high performing language models can be difficult without the technical knowledge

required to interact with the underlying models.

The aim of this project is to design, and implement software solutions that utilise GPT-2

to allow users to generate text, and allow users to generate fictional news articles. This project

also explores aspects of interacting with GPT-2, and the effects of an easy to use tool that

facilitates usage of language models that produce high quality text.

Originality Avowal

I verify that I am the sole author of this report, except where explicitly stated to the contrary.

I grant the right to King’s College London to make paper and electronic copies of the

submitted work for purposes of marking, plagiarism detection and archival, and to upload a

copy of the work to Turnitin or another trusted plagiarism detection service. I confirm this

report does not exceed 25,000 words.

Danyaal Khan

April 21, 2020

Acknowledgements

I would like to thank my supervisor Professor Mischa Dohler for his support

throughout the duration of this project. His proposition of the topic of this

dissertation has allowed me to fulfil my interest in it by exploring it.

Contents

1 Introduction 3
1.1 Project Aims . 4
1.2 Own Research Contributions Summary . 5

2 Background 6
2.1 Language Models . 6
2.2 Sequence-to-sequence Models . 7
2.3 Transformer Models . 8
2.4 gpt-2-simple . 12
2.5 Discord.py . 17
2.6 Datasets . 17
2.7 Existing Tools . 18

3 Requirements & Specification 19
3.1 Requirements . 19
3.2 Specification . 20

4 Design 22
4.1 Article Generator Architecture . 22
4.2 Discord Bot Architecture . 24
4.3 Article Generator GUI . 26
4.4 Article Generator CLI . 29
4.5 Discord Bot Setup . 30
4.6 Discord Bot UI . 31

5 Implementation 33
5.1 Article Generator . 33
5.2 Discord Bot . 40

6 Evaluation 44
6.1 Finetuning the Article Generator Model . 44
6.2 Limitations . 45
6.3 Own Research Contributions . 46

1

7 Legal, Social, Ethical and Professional Issues 49
7.1 The Black Box Problem . 49
7.2 Fake News and Propaganda . 50

8 Conclusion and Future Work 53
8.1 Conclusion . 53
8.2 Future Work . 54

Bibliography 58

A Extra Information 59

B User Guide 60
B.1 GPT2 Article Generator . 60
B.2 GPT2 Bot . 62

C Source Code 63
C.1 Discord Bot . 63
C.2 Article Generator . 70

2

Chapter 1

Introduction

A language model is a probability distribution that gives the probability of a given sequence

of words. This can be used to determine the probability of a certain words appearing after a

given sequence of words, from which the most likely word to appear after a provided sequence

of words can be determined. Alternatively, the word appearing after a given sequence can be

sampled from the distribution, which allows the whole probability distribution to be taken into

account as words with a non zero likelihood can be selected.

Predictive text is an accessible example of this that is commonly used in on-screen keyboards

in phones, providing suggestions for likely next words. However due to constraints requiring the

predictions to be very quick while using minimal computing resources these predictions tend

not to look far back in the text, which can lead to repeated predictions of the same sequence of

words. However taking these long term dependencies into account in order to consider enough

relevant context is important in generating high quality text.

Neural networks can be effective in being used as a language model as they can represent

the information associated with words in an abstract way that scales well as they can avoid

the curse of dimensionality [1]. The architecture of a neural network can affect the quality of

the generated samples. Architectures used as language models include but are not limited to

recurrent neural networks (RNNs) which use an internal state (memory) to store information

about previous parts of the word sequence, Long short-term memory which is a type of RNN

that have sub-components that control what it forgets as the sequence progresses, and Trans-

formers which encode sequences of inputs and take contextual information into account via an

attention mechanism before decoding and producing output probabilities.

GPT-2 is large Transformer based model developed by OpenAI that has 1.5 billion pa-

3

rameters (weights and biases) and has been trained on 8 million web pages. Because of the

size and diversity of this dataset it outperforms language models trained on specific domains

without needed domain-specific training datasets, producing human quality samples [2]. Four

versions of GPT-2 are currently publicly available, the largest of which is the original model

with 1558 million parameters whilst the other versions have 774 million, 355 million, and 124

million parameters [3]. These are often referred to as 1558M, 774M, 355M, and 124M models

respectively.

These models can be fine-tuned on provided datasets in the form of written text. While

this is theoretically possible with all four models, efforts to fine-tune the 1558M and 774M

models have been met with difficulties due to the memory constraints of modern hardware

[4]. While there are efforts to increase the viability of fine-tuning the larger models using

software optimisations, finetuning models in this project will focus on the 124M model as it is

computationally cheaper to finetune and generate samples from.

1.1 Project Aims

This project’s core objective is to design and implement a program that allows for the generation

of news articles by leveraging GPT-2 models. This will have functionality that allows the user

to interact with it either via a built-in GUI, or through the command line. These options

provide the program with both the ease of use of a GUI, and the higher capacity of integrating

it into an existing or new software solution that a command line application has.

This tool will be able to take input from the user, allowing for the title to be specified

and some optional initial content. From this information, a news article will be generated and

outputted either through the GUI, the command line, or written to a file.

A secondary piece of software will also be designed and written to allow for the use of GPT-2

models to generate samples via the Discord messaging app. This will be via commands issued

via a Discord message, generating a continuation of the provided prompt and sending it as a

Discord message. Discord was selected as it is a platform that has grown in popularity, with

“56,000,000 monthly [users]” and “963,000,000 messages sent a day” [5].

This project will also explore some of the factors that can influence the samples (text)

generated by GPT-2, such as prior fine-tuning and model size. These factors can contribute to

improving sample quality so that it appears to be more human written, and generating novel

samples as opposed to repeating information in the dataset used to train/finetune it. Fine-

tuning on datasets from a particular domain can allow the models to produce better results, but

4

also risk the introduction of any bias in the dataset potentially appearing in samples produced.

Bias towards extreme views could potentially be done purposefully by bad actors leading to

“concerns about the potential for misuse” [3], suggesting “GPT-2 relatively quickly integrates

the nuances of the ideology it is trained on when responding to a specific prompt”. The benefit

of fine-tuning for specific domains and the risk of bias will be explored and evaluated manually.

1.2 Own Research Contributions Summary

This section touches upon some of the research contributions this project can provide. These

points are explored in detail in section 6.3.

• Language models can be effectively finetuned to generate samples in various formats.

• Despite being made for natural language processing, language models can be used to

produce samples that aren’t purely natural language.

• The GPT-2 language model can learn clear formatting rules in datasets quickly, even if

the datasets used for finetuning are small.

• The GPT-2 language model is able to learn the use of emojis from finetuning on a dataset

that includes emojis, despite no emojis appearing in the original dataset it was trained

on.

• Language models are capable of learning the writing styles of multiple authors, resulting in

a model that can produce samples that include different styles depending on the context.

For example a different writing style based on the specified name of the author.

• If an insufficiently sized dataset is used when finetuning GPT-2, the model will eventually

overfit the dataset if finetuned for enough steps. This can limit the quality of generated

samples. However using a smaller version of GPT-2 can aid in reducing overfitting.

5

Chapter 2

Background

2.1 Language Models

Unigrams are a simple type of language model that predict the probability of a sequence of

words, by independently considering the probability of each word appearing in any sequence

of words. They make the assumption that multiplying the probability of each word considered

individually approximates the probability of the whole sequence.

P (w1, ..., wn) ≈
n∏

i=1
P (wi) (2.1)

N-grams are language models that use the fact that the probability of a sequence is equal to

multiplying the probability for each word of that word appearing given the sequence of every

word before, and the assumption that this can be approximated by considering up to n − 1

words preceding it. This is an nth order Markov property.

P (w1, ..., wn) =
n∏

i=1
P (wi | w1, ..., wi−1) ≈

n∏
i=1

P
(
wi | wi−(n−1), ..., wi−1

)
(2.2)

Neural network based models (neural language models or continuous space language models)

predict the probability of a given sequence by using continuous representations [6]. Types of

neural networks used as language models include recurrent neural networks (RNNs), long short

term memory (LSTMs), and Transformers.

6

2.2 Sequence-to-sequence Models

Information from this section is sourced from “Visualizing A Neural Machine Translation

Model” by Jay Alammar [7].

Sequence-to-sequence models are a type of deep learning model used in natural language

processing tasks [8]. They can be used to take a sequence of words and output another se-

quence of words, allowing for natural language processing tasks such as summarising text, and

translating text [9]. This model is composed of an encoder and decoder.

2.2.1 Context

An encoder processes each word in the input and produces a vector of numbers, known as the

context, that encapsulates the information of the original sequence. This context is then passed

from the encoder to the decoder, which uses it to generate the output sequence.

To convert a sequence of words into the context an RNN is used. RNNs maintain a hidden

state in the form of a vector, and use this alongside an input vector to update the hidden state

and generate an output. This allows information about element of an input sequence to be

used when generating outputs for following elements of the sequence.

The encoder is an RNN updating its hidden state as it processes each word in the sequence,

this hidden state is the context. After the whole sequence has been processed the final hidden

state is passed to the decoder. The decoder then uses the context to generate the sequence of

words, maintaining its own hidden state. For the decoder each time it runs a computation it

generates and outputs a single word, its hidden state is only used internally.

2.2.2 Attention

Attention mechanisms allow the decoder to focus on parts of the sequence by amplifying the

signal from relevant parts of the input sequence [10][11]. Attention allows models to produce

better results than models that don’t use attention.

For models that use attention instead of just passing the final hidden state to the decoder,

the encoder passes the hidden state after each update. Since the hidden state is updated after

each word is processed, the decoder has knowledge of what the hidden state looked like through

the processing of the sequence.

Every time the decoder generates a word, it weights each of the hidden states it has by a

softmaxed score. Meaning states with low scores have less of an impact on the current word

7

and states with a high score have a greater impact. This score is calculated for each hidden

state each time the decoder generates a word.

2.3 Transformer Models

Information from this section is sourced from “The Illustrated Transformer” by Jay Alammar

[12].

The transformer model is a type of model that is “based solely on attention mechanisms,

dispensing with recurrence and convolutions entirely” [13]. These techniques have been shown to

produce models “superior in quality while being more parallelizable and requiring significantly

less time to train” [13].

Figure 2.1: A high level visualisation of the architecture of a transformer model

Transformer models are made up of an encoder stack and decoder stack made up of encoders

chained together and decoders chained together, where the number of encoders is equal to the

number of decoders. The input is passed to the first encoder after being encoded and the

output of each encoder is passed to the next encoder until the last encoder is reached. Before

the sequence is passed to the encoder it is converted into a sequence of vectors, where each

vector represents a word in the sentence.

8

Figure 2.2: A visualisation of the architecture of a transformer model and its components

2.3.1 Encoders

Each encoder contains a self-attention layer and a feed forward neural network. When the

encoder is passed an input it is first processed by the self-attention layer in the encoder before

being passed to its feed forward neural network, the output of which is the output of the

encoder. Each encoder receives a list of vectors as input, each vector being an representation of

a word in the sequence. This means the words in the sequence don’t have to be processed one

after the other or in any specific order, but this doesn’t mean the order of words is ignored.

Self-attention

The self-attention layer in each encoder takes this list of vectors as a whole, creating a new

vector for each word in the sequence. This vector has a length equal to the number of words in

the sequence. For a given word in the sequence, this new vector assigns a score to every word in

the sequence (including itself) based on how relevant that word is when considering the current

word. For example in the sentence “Alice won the tournament, so she is proud.” it could be

expected that the vector for “she” would give a high score to the word “Alice” because Alice is

the subject being referred to by the word “she”.

The self-attention layer first uses each of the input vector representing the embeddings to

independently calculate a Query vector, a Key vector, and a Value vector. Each of these are

calculated by multiplying the embedding vector by a Query matrix, Key matrix, and Value

9

matrix. These matrices remain constant throughout this process after being generated during

the training process.

For a given word to calculate the score of other words, the dot product between the Query

vector of the current word and the Key vector of the other word is calculated. This is then

divided by the square root of the dimension of the Key vectors, which is constant between words.

Once this is done for every word (including the current word), these values are softmaxed. This

softmaxed score represents how relevant that word is for the current word. Each word’s Value

vector is then multiplied by the corresponding score, resulting in weighted Value vectors wherein

the impact of less relevant words is reduced in later calculations. Finally the weighted Value

vectors are summed, producing a matrix that is the self-attention layer’s output for the current

word.

The self-attention layer applies these calculations using matrices for every word in the

sequence, generating an output for each of them. These outputs are then passed to the feed

forward neural network.

Figure 2.3: A visualisation of an encoder and its components

Multi-headed Self-attention

The self-attention layer can be defined with the addition of a multi-headed attention mechanism

which allows for improved focus on multiple words in the sequence via multiple representation

subspaces. These subspaces are represented by using multiple Query, Key, and Value matrices,

10

each of which is part of its own attention head. These matrices still remain constant throughout

this process after being generated during the training process.

Each attention head performs the same self-attention calculation explained above. Due to

the Query, Key, and Vector matrices being different in each head, the matrices calculated by

head attention head will be different. However before these matrices can’t be passed to the

feed forward neural network without first being combined.

The results of the attention heads are concatenated to produce a larger matrix, and then

multiplies by a weight matrix with dimensions such such that the result will have the correct

dimensions to be passed to the feed forward neural network. This weight matrix remains

constant throughout this process after being generated during the training process.

2.3.2 Accounting for Sequence Ordering

The process described so far does not take the order of the input sequence into account. To do

this, when the words are encoded a vector is added to each word that represents that words

position. This vector is generated by a predefined function and is based on the number of

words and the size of the embedding. The patterns of the vectors generated by this function

are learned by the model during the training process. Adding these vectors to each word’s

vectors allows the model to better determine each word’s position, and the distance between

words in the sequence.

2.3.3 Decoders

Each decoder contains a self-attention layer, an encoder-decoder attention layer, and a feed

forward neural network. In each decoder this layer is fed the Key attention vector and the

Value attention vector from the last encoder. These vectors better allow each decoder to focus

on the relevant words in the input sentence.

Once the decoding phase has completed the encoding phase begins. Each step of this phase

takes the output of the previous step as input and produces a new word as part of the output

sequence, building up the output sequence. However a key difference is that attention can

only be on previous words of the sequence when generating a new word, which is implemented

by setting future positions to negative infinity before the softmax step of the self-attention

calculation.

11

Figure 2.4: A visualisation of an decoder and its components

2.3.4 Generating Words

The decoder stack generates an output in the form of a vector of floats. This is converted into

a string by the final Linear layer and Softmax layer. First the linear layer uses the vector from

the decoders to generate a vector with a size equal to the number of possible words. Each value

in this vector corresponds to a specific word where higher values mean the word is more likely.

The softmax layer then converts this into a vector in which the value for each word is the

probability of that word, meaning the values in the vector must add up to 1. Therefore cell

with the highest value in the vector has the highest probability of being the word to generate,

and can therefore be selected as the word to be generated.

2.4 gpt-2-simple

This project uses version 0.7.1 of gpt-2-simple which is an open-source “Python package that

wraps existing model fine-tuning and generation scripts for OpenAI’s GPT-2 text generation

model” [14]. It also has specific functionality for Google Colab to make it easier to utilise the

provided cloud storage.

12

2.4.1 Downloading GPT-2 Models

This library includes a function to facilitate downloading the GPT-2 models. Downloading

the GPT-2 models allows for the interaction with them. All for model sizes are downloadable,

which are: 124M, 355M, 774M, and 1558M. These vary in size being approximately 480MB,

1.3GB, 2.9GB, and 5.8GB from smallest to largest. Due to the larger models having more

parameters they perform better when generating text, but they also take longer to finetune

and generate text.

The function in the library that downloads the models is download gpt2. It takes up to

2 arguments, called model dir and model name. model dir specifies the folder in which the

model will be located, in which a subfolder is created for each downloaded model. The default

value for this is ’models’. model name specifies which model to download, which is ’124M’ by

default. The values this can take are ’124M’, ’355M’, ’774M’, and ’1558M’.

2.4.2 Generating Text With GPT-2 Models

The generate function facilitates generating text using GPT-2 models. Both the default down-

loaded models and finetuned models can be used to generate text. The function takes the

following arguments:

• sess: The TensorFlow session object that represents the current TensorFlow session.

This can be generated using the start tf sess function.

• run name: A string that is the name of the model which is used when loading a model

that has already been finetuned, with a default value of ’run1’.

• checkpoint dir: A string that is the directory containing models that have already been

finetuned, with a default value of ’checkpoint’.

• model name: A string that is the name of the model size the sample is being generated

using, values this can take are ’124M’, ’355M’, ’774M’, and ’1558M’, with a default value

of None.

• model dir: A string that is the directory containing already finetuned models that may

be used, with a default value of ’models’.

• sample dir: This is currently not used when generating samples, and has a default value

of ’samples’.

13

• return as list: A boolean that represents whether or not the generated sample(s) will

be returned as a list where each value in the list is a sample (when it is True) or will be

printed to console (when it is False), where the default value is False.

• truncate: A string for which the sample generated will be cut at, making the sample

anything before the truncated value, this has a default value of None which disables this

functionality.

• destination path: A string that is the filename to write the generated samples to, with

a default value of None which disables this functionality.

• sample delim: A string used to separate samples, with a default value of ’=’ 20 +

’\n’ which represents 20 equals characters followed by a newline.

• prefix: A string to start each sample with, with a default value of None which means

samples are generated with no specified prompt.

• seed: An integer that sets TensorFlow’s seed for generating pseudo-random values [15].

• nsamples: An integer that is the number of samples to be generated in total with a

default value of 1.

• batch size: An integer that is the number of samples to generate simultaneously with

a default value of 1. This value must divide the value of nsamples, and only has a

performance impact.

• length: An integer that is the number of tokens (words) each sample has with a default

value of 1023. This is in addition to the prefix (if there is one), and truncation is performed

after the sample of this length is generated (if at all).

• temperature: A “Float value controlling randomness in boltzmann distribution. Lower

temperature results in less random completions. As the temperature approaches zero,

the model will become deterministic and repetitive. Higher temperature results in more

random completions” [16].

• top k: An “Integer value controlling diversity. 1 means only 1 word is considered for

each step (token), resulting in deterministic completions, while 40 means 40 words are

considered at each step. 0 (default) is a special setting meaning no restrictions” [16].

14

• top p: A float value between 0.0 and 1.0 that dictates what proportion of the top of the

distribution to sample words from with a default value of 0.0. This is only used if the

value is nonzero and then overrides the use of top k [16].

• include prefix: A boolean that represents whether or not the prefix specified by prefix

(if there is one) will be included in the generated sample with a default value of True,

meaning the prefix will be included in the sample.

2.4.3 Finetuning GPT-2 Models

The finetune function allows for the finetuning of GPT-2 models, which is a type of transfer

learning. “Transfer learning refers to a learning scheme where weights of a model that are

already optimized for a certain task are used for learning a slightly different task” [17]. Both

the default downloaded models and the finetuned models can be further finetuned by this,

allowing for finetuning of the same model at different points in time, and even using different

finetuning arguments. The function takes the following arguments:

• sess: The TensorFlow session object that represents the current TensorFlow session.

This can be generated using the start tf sess function.

• dataset: A string that is the relative path to the file containing the text to finetune the

model on.

• steps: An integer that is the number of epochs to train the model for until stopping.

• model name: A string that is the name of the model size being finetuned, values this can

take are ’124M’, ’355M’, ’774M’, and ’1558M’, with a default value of None.

• model dir: A string that is the directly containing already finetuned models that may

be further finetuned, with a default value of ’models’.

• batch size: An integer that is the number of samples to generate simultaneously when

generating samples, with a default value of 1. This value must divide the value of

sample num, and only has a performance impact.

• learning rate: A float that is the learning rate passed to the TensorFlow optimizer

being used [18][19].

15

• accumulate gradients: An integer that represents the number of training steps to per-

form “without updating the model variables while accumulating the gradients of those

steps and then using the accumulated gradients to compute the variable updates” [20].

• restore from: A string that represents whether at the start of finetuning a new model

that has not been finetuned is loaded (with the value being ’fresh’), or the latest version

of the model with the same model name is loaded (with the value being ’latest’). The

default value for this is ’latest’.

• run name: A string that is the name of the model which is used when saving the model and

when loading a model that has already been finetuned, with a default value of ’run1’.

• checkpoint dir: A string that is the directory containing models that have already been

finetuned, with a default value of ’checkpoint’.

• sample every: An integer that is the number of steps before generating and printing

another sample, with a default value of 100. This generating and printing is repeated

every time this number of steps passes until the finetuning stops.

• sample length: An integer that is the number of tokens (words) each sample has when

generated, with a default value of 1023.

• sample num: An integer that is the number of samples to be generated every time samples

are generated, with a default value of 1.

• multi gpu: A boolean that represents whether or not to utilise all GPUs the system has,

where True means to use all GPUs and False means to use at most 1 GPU. This has a

default value of False

• save every: An integer that is the number of steps before saving the model to disk, with

a default value of 1000. This saving is repeated every time this number of steps passes

until the finetuning stops.

• print every: An integer that is the number of steps before saving the model to disk,

with a default value of 1000. This saving is repeated every time this number of steps

passes until the finetuning stops.

• max checkpoints: An integer that is the number of versions of the model to save to disk

before deleting the oldest versions, with a default value of 1.

16

• use memory saving gradients: A boolean that if True finetunes using “memory efficient

gradient implementation inspired by ’Training Deep Nets with Sublinear Memory Cost”’

[21][22]. The default value is True but if a model larger than ’124M’ is being used, this

will be set to True regardless of the value passed.

• only train transformer layers: A boolean value that if True only changes the trans-

former layers when fintuning the model. The default value is True but if a model larger

than ’124M’ is being used, this will be set to True regardless of the value passed.

• optimizer: A string that is the name of the optimiser used to train the TensorFlow

model in the finetuning process. This can either be ’adam’ or ’sgd’, and is ’adam’ by

default.

• overwrite: A boolean value that represents whether or not to overwrite an existing

model with the same run name when saving the model to disk. The default value of this

is False.

2.5 Discord.py

This project uses version 1.2.5 of discord.py which is an open source “async ready API wrapper

for Discord written in Python” [23]. It has functionality that allow it to trigger functions from

command words by “attaching [the command annotation] to a regular Python function” [24].

2.6 Datasets

All the News is a dataset consisting of over 200,000 news articles from a variety of publications

where “the data primarily falls between the years of 2016 and July 2017, although there is a

not-insignificant number of articles from 2015, and a possibly insignificant number from before

then” [25].

The basis of this will form the dataset that will be used in the finetuning process of the

GPT-2 model behind the article generating program.

A dataset of a WhatsApp chat log was finetuned on for informal testing. This was comprised

of approximately 30,000 messages sent from up to 9 members and was used in the raw format

WhatsApp exported it as. A dataset made up of approximately 1,000 cocktail recipies was also

used to finetune a model for informal testing.

17

2.7 Existing Tools

Due to the recent release date of GPT-2 in February 2019 [26], there are not many publicly

available online services to allow users to interact with GPT-2.

Talk to Transformer is a website that uses GPT-2 to show “how a modern neural network

completes your text” [27]. The website “runs the full-sized GPT-2 model, called 1558M” [27]

with no finetuning beyond the fresh model, with all processing being performed server side.

This model is used to generate text by taking a prompt from the user and using that as the

prefix when generating so that a continuation of it is produced.

Write With Transformer is a “web app, built by the Hugging Face team” [28] that uses

“modern neural network[s] to auto-complete” [28] text written by the user. This tool allows

for using any of the four model sizes. It also allows for adjusting the top p parameter to a

value between 0 and 1 (inclusive), and the temperature parameter to a value between 0 and 3

(inclusive), both to 2 decimal places.

However these websites have limitations in their usage:

• There is no publicly available API available to allow for using these tools to generate text

as part of a software package.

• There is no way for the user to finetune or use an already finetuned model to generate

text via these platforms.

• These tools cannot be used offline or utilise the user’s own hardware to generate text

These are limitations that will be addressed by the software developed in this project.

18

Chapter 3

Requirements & Specification

Both of these pieces of software should be designed so that a user with no technical knowledge

can use them to interact with the GPT-2 models and generate text. The text generated will

be specialised from a pre-finetuned GPT-2 model in the case of the Article Generator, and will

be more generalised from a fresh GPT-2 model in the case of the Discord bot.

They should also allow for a user/administrator with the sufficient technical knowledge to

use a GPT-2 model that they have finetuned themselves. Enabling both users with specialised

knowledge to make use of their own GPT-2 models in these programs.

3.1 Requirements

Both the Discord Bot and the Article Generator will be written in Python and therefore require

the suitable version of Python for the operating system being run on.

TensorFlow is required by gpt-2-simple, either a version with GPU support or without GPU

support. As recommended by gpt-2-simple “for finetuning, [...] use a GPU, although you can

generate using a CPU (albeit much more slowly)” [14]. TensorFlow gpu support also has a

hardware requirement of an “NVIDIA® GPU card with CUDA® Compute Capability of 3.5

or higher” [29]. The required version of TensorFlow without GPU support can be installed

with the command pip install tensorflow==1.15.2. If this version of TensorFlow is to be

used, the hardware GPU requirement and the last 4 requirements in each table below are not

necessary.

19

3.1.1 Article Generator Requirements

The Article Generator will make use of the dependencies below and will therefore require them

in order to function.

Name Version Source

GPT-2 Simple 0.7.1 pip install gpt-2-simple==0.7.1

TensorFlow 1.15.2 pip install tensorflow-gpu==1.15.2

NVIDIA GPU drivers 418+ https://www.nvidia.com/drivers/

CUDA Toolkit 10.1+ https://developer.nvidia.com/cuda-toolkit-archive/

CUDA Profiling Tools 10.1+ [Included with CUDA Toolkit]

cuDNN SDK 7.6+ https://developer.nvidia.com/cudnn

3.1.2 Discord Bot Requirements

The Discord Bot will make use of the dependencies below and will therefore require them in

order to function.

Name Version Source

GPT-2 Simple 0.7.1 pip install gpt-2-simple==0.7.1

Discord.py 1.2.5 pip install discord.py==1.2.5

TensorFlow 1.15.2 pip install tensorflow-gpu==1.15.2

NVIDIA GPU drivers 418+ https://www.nvidia.com/drivers/

CUDA Toolkit 10.1+ https://developer.nvidia.com/cuda-toolkit-archive/

CUDA Profiling Tools 10.1+ [Included with CUDA Toolkit]

cuDNN SDK 7.6+ https://developer.nvidia.com/cudnn

3.2 Specification

3.2.1 Article Generator Specification

• The application should be capable of generating articles using a GPT-2 model on disk.

• The application should not rely on an internet connection, using only local resources.

• The application should have a GUI that provides access to its functionality.

• The user should be able to provide a title for the fictional article being generated.

• The user should optionally be able to provide some initial content for the article.

20

• The user should be able to provide this above information by either manually entering it,

or via a text file on disk.

• The user should be able to generate multiple articles at once, each with a varied completion

of the input provided.

• The user should be able to specify the maximum length of articles generated.

• The user should be able to do all of the above from the command line.

• The user should be able to use the command line to either print the generated articles,

or write them to files on disk, or both at once.

3.2.2 Discord Bot Specification

• There must be a way for an administrator to provide a Discord API key without editing

the script.

• The generation of text must utilise the administrator’s hardware.

• Users should be able to execute commands via Discord messages sent in the same Discord

server as the bot.

• Users should be able to download fresh GPT-2 models for the bot to use.

• Users should be able to generate text with a downloaded model with a specified prompt.

3.2.3 Limitations

Finetuning the models in preparation for specialising them for a specific type of content can

very be computationally expensive, especially with the larger models. “The 774M ’large’ model

may support finetuning because it will cause modern GPUs to go out-of-memory” [14]. While

generating text using the models is also more difficult with the larger models “you can still

generate from the default pretrained model using [the 774M model]” [14].

The programs will use the smallest model, which is the 124M model, in order to minimise

the difficulty of computation. This can allow text to be generated faster and also reduce the

performance required of the machines running them. This also reduces the likelihood of the

models overfitting datasets that may not be large enough.

21

Chapter 4

Design

This chapter will detail how the article generator program and the discord bot are structured

from a high level view. This will provide the foundation for which the implementation of each

will be based on.

4.1 Article Generator Architecture

The architecture of the article generator program consists of multiple subsystems that will

interact with each other as part of a three-tiered architecture. The three-tiered architecture

was selected as it allows components to better adhere to the single-responsibility principle. It

can also allow for the modules in each tier to be maintained separately from those in other

tiers. This reduction is coupling allows for easier maintenance of the program as there is more

focus on relying on the promised interface as opposed to the specific implementation.

The architecture diagram below in Figure 4.1 shows which tier each component is in. Ar-

rows represent a dependency, where the component at the base of the arrow depends on the

component at the head of the arrow.

22

Figure 4.1: The Architecture Diagram for the Article Generator

4.1.1 Article Generator Architecture Tiers

Each of the components in this program will be separated into one of the three tiers which are

the presentation tier, the logic tier, and the resource tier.

Presentation Tier

The presentation tier is the highest level of the program. It contains a single Gui component,

whose responsibilities relate to displaying the necessary information to the user. It is also

responsible to passing all communication and interaction from the user to other tiers. This can

range from passing button clicks, to text input from the user to the other tiers. This tier also

performs basic data validation such as ensuring a field contains an input or ensuring the input

in a field is of the right type. The Gui should also respect the singleton design pattern as only

a single instance of it should exist.

Logic Tier

The logic tier controls the functionality of the program. It contains the ArticleGenerator

component, and the Generator component. The ArticleGenerator is responsible for parsing

command line arguments and ensuring the combination of arguments is valid. Then it invokes

the relevant methods in the Generator component, passing the necessary arguments if required.

The Generator component is responsible for facilitating interaction between the resource

23

tier and the presentation tier. The methods in this component pass arguments to Gpt2Handler

after performing small pre-processing steps on the user input from the presentation and post-

processing on the output from the resource tier. It should also respect the singleton design

pattern as only a single instance of it should exist.

Resource Tier

The resource tier contains a single Gpt2Handler component, whose responsibilities involve

interacting with the already finetuned GPT-2 model. It converts the input into a format

so that the completion the model generates can be properly split by this component. This

completion can then be returned as an output with the title and sample separated. It should

also respect the singleton design pattern as only a single instance of it should exist.

4.2 Discord Bot Architecture

The architecture of the discord bot consists of a simple bot component and multiple cog com-

ponents. The bot component loads the cog components and starts the bot via functions in the

discord.py library/ Cog components “organize a collection of commands [...] and some state

into one class” [30].

The architecture diagram below in Figure 4.2 shows the interactions between components,

including cogs. Arrows represent a dependency, where the component at the base of the arrow

depends on the component at the head of the arrow.

Figure 4.2: The Architecture Diagram for the Discord Bot

24

4.2.1 Discord Bot Cogs

Cogs are a feature of the Discord.py library that facilitate separating functionality into their

own classes. Cogs can be loaded into a bot, allowing the bot to use all the functionality provided

in the cog. Use of cogs can allow for better adherence to the single-responsibility principle, as

the functionality each cog provides can be written to be related, thus increasing cohesion. Cogs

also do not need to interact with each other, allowing for easier separate maintainability. These

allow for reduced coupling, making maintenance of the bot easier. Due to the cogs acting as

separate modules, they can even be taken from one bot and placed in another without the need

of much refactoring.

setup Cog

The setup cog will include anything required in setting up the bot that isn’t covered by the

discord.py library or other cogs. This can even be as simple as sending a message to notify

users that the bot is ready, or print such a message to console so that only the admin will be

notified.

basiccommands Cog

The basiccommands cog will include basic commands that aren’t crucial to the functionality

to the bot but can provide information about the bot. Because these commands will not be

necessary to making the bot function, they will be placed in their own cog. These may include

commands used for convenience or debugging, such as checking the latency of the bot.

utilities Cog

The utilities cog will allow the user to perform commands that directly affect the functionality

of the bot. This is used as a convenience feature that means the administrator does not have

to manually restart the bot or or use the command line to perform the provided functionality.

For example when adding a new cog or editing an existing cog, the administrator would

usually have to restart the bot so that all cogs are loaded again. The utilities load (if loaded)

will allow for loading cogs by sending a command via a discord message.

gpt2 Cog

The gpt2 cog will provide the main functionality of the bot, being interacting with GPT-2

models. It will allow users to generate samples with a custom prompt, and change various

25

parameters that affect the configuration of the bot (e.g. the name of the model to use). It will

also provide additional functionality that is either useful or required to generate samples, such

as downloading one of the four default models.

4.3 Article Generator GUI

The GUI (Graphical User Interface) of the program will be a core aspect of how the user inter-

acts with it. It must be simple enough that a user can use it intuitively, without compromising

on the functionality of the program.

4.3.1 Home Screen

The home screen is the first window that appears when the user launches the program. It

contains fields for user to input text and adjust parameters used in the generation process.

Title

The first line contains a label, a drop down menu, and a text field. The label contains the text

Title: to indicate to the user that the text field in this line represents the title. The user can

write any text in the text field except for newline characters, ensuring user input is a single

line.

The drop down menu allows the user to select between Text and File, with the former

being the default value. If the user selects File in the drop down box, a file dialog will appear

allowing the user to select a text (.txt) file by default, with the option to switch the type to

any file. The contents of this file will overwrite any text in the text field and disable entry in

the field. But if the text field contains content, a dialog box will appear before the file dialog

asking the user if they wish to continue.

If the user selects Text in the drop down menu, the contents of it will remain the same and

user input will be enabled (if it was disabled).

Initial Content

The second line is very similar to the previous, but the label contains the text Initial

Content:. An additional difference is that the text field spans a height of 10 lines, indicating

that the user input can do so to. For this reason unlike the title text field, this text field can

accept newline characters.

26

Number of Samples

The third line contains a label with the text Number of Samples: and a spinbox with a default

value of 1. This spinbox can take values that are integers ranging from 1 to 99 (inclusive). The

user can also input a value by typing it into the spinbox, but it will be rejected when text

generation is attempted if it’s not a valid value.

Max Words Per Sample

The fourth line is much like the previous line, but the label contains the text Max Words Per

Sample:. An additional difference is that the spinbox for this takes values that are integers

ranging from 1 to 1023 (inclusive), with a default value of 1023.

Generate

The fifth and final line contains a button that is centered in the column of the above text fields.

This button contains the text Generate and once pressed begins the process of generating the

article(s) based on the user input. However before generating the article(s), some basic checks

on the inputs will take place. This includes ensuring the text field for the title is not empty,

and ensuring the values in the spinbox are both valid for their respective spinbox.

Figure 4.3: The Article Generator’s Home Screen as it First Appears

27

4.3.2 Article Viewer

The article viewer is a window that appears once the samples have been generated. It’s purpose

is to display all of the samples such that the user can switch between them. When this appears

it will be on top of the home screen which can only be interacted with after the sample viewer

is closed.

Displaying the Articles

The first line contains a text field that spans the width of the whole line. This text field contains

the title of the article the user inputted, and cannot be edited by the user.

The second line contains a text field that spans the width of the whole line and is 20 lines

tall. This allows the text field to accommodate a larger amount of text, as expected in the

body of a news article. The text field contains the body of the article, starting with the initial

context the user inputted, and cannot be edited by the user.

4.3.3 Switching Between the Articles

The third line contains 2 buttons around the center line. The first contains a <, and the second

contains a >. Since all of the articles must share the same title, only the body of the articles

need to change. The first button changes the body of the article to that of the previous one,

and the second changes the body of the news article to that of the next one. If either the first

or last articles are reached, the first or second button (respectively) will be disabled.

Figure 4.4: The Article Generator’s Article Viewer as it First Appears

28

4.4 Article Generator CLI

The CLI (Command Line Interface) will be crucial for allowing other programs to interact

with this program. It must be clear and consistent in how it takes and handles arguments,

while providing providing the necessary functionality for such a use case. The functionality it

provides must be as much as or more than the functionality provided by the GUI.

Passing no arguments to the program results in the GUI being launched. If arguments are

passed but they are an invalid combination or have invalid values, an exception will be thrown

to notify the user of this. Bellow are the arguments that can be passed and what they do:

• -h, --help: Print a help message for using each of the command line arguments, then

quit the program.

• -f FILENAME, --filename FILENAME: Use the title and initial content in a file with the

filename specified by FILENAME. The file should contain the title in the first line, and

initial content (if any) in the second line..

• -o OUTPUT FILENAME, --output filename OUTPUT FILENAME: Write the generated arti-

cle to a new file with the filename specified by OUTPUT FILENAME. The file must not already

exist. The sample number is appended to the filename before the extension if multiple

samples are to be generated.

• -p, --print: Print the generated sample(s) to console.

• -n NUM SAMPLES, --num samples NUM SAMPLES: Generate a number of samples equal to

NUM SAMPLES. It must be a positive integer. Default: 1.

• -w NUM WORDS, --num words NUM WORDS: Generate samples with a number of words that

is not greater than NUM WORDS. It must be a positive integer that does not exceed 1023.

Default: 1023.

• -t TITLE FILENAME, --title filename TITLE FILENAME: Use the text in the first line

of the file specified by TITLE FILENAME as the title. This will be ignored if a filename for

--filename is specified.

• -c CONTENT FILENAME, --content filename CONTENT FILENAME: Use the text in the first

line of the file specified by CONTENT FILENAME as the initial content. This will be ignored

if no filename for --title-filename is specified.

29

• -T TITLE, --title TITLE: Use the text specified by TITLE as the title. This will be

ignored if a filename for --filename or --title filename is specified.

• -C CONTENT, --content CONTENT: Use the text specified by CONTENT as the initial content.

This will be ignored if no title for --title is specified.

4.5 Discord Bot Setup

Using this program requires the admin to “first create a Discord Bot account” [31]. This section

will step through stages in the “Creating a Bot Account” and “Inviting your bot” guides in the

Discord.py documentation [31].

1. Login to the Discord website: https://discordapp.com/.

2. Navigate to the Developer Portal under the Developers tab, and make sure the

Applications section is open.

3. Click the New Application button.

4. Enter a name for the application then click the Create button.

5. Navigate to the Bot section from the sidebar.

6. Click the Add Bot button then click the Yes, do it! button on the popup.

7. Click the Copy button under the Token heading. The API Key for the bot will now be in

the clipboard.

8. Create a file called apikey.txt in the same directory as the bot.py file. Paste the API

Key into it.

9. On the web page navigate to the OAuth2 section from the sidebar.

10. Tick the bot checkbox under the scopes heading.

11. Tick the Send Messages and Manage Messages checkboxes under the Bot Permissions

heading.

12. Copy and open the URL in the field under the Scopes heading. This should navigate to

a new page.

13. Select the server to add the bot to then press the Continue button, then press the

Authorize button.

30

https://discordapp.com/

4.6 Discord Bot UI

The user can interact with the Discord Bot by sending a message that matches a command

recognised by the bot. These messages must be sent in a Discord server that also contains the

bot. All commands must begin with the ;; prefix.

4.6.1 Downloading a Fresh Model

The ;;download model command can be used to download one of the four fresh models (124M,

355M, 774M, and 1558M). If used without an argument, it downloads the 124M model by

default. However, any of the four models can be downloaded by specifying their model name.

Sending the message ;;download model results in the 124M model being downloaded. Send-

ing the message ;;download model 355M results in the 355M model being downloaded. This

works with any of the four model names. If the model name is valid the message Model

downloaded will be sent by the bot after downloading the model, otherwise the message ERROR:

Invalid argument will be sent by the bot and no model will be downloaded.

4.6.2 Generating a Sample

The ;;generate command is used to generate samples using a downloaded model. The model

used is determined by the model named in the configuration.

Sending the message ;;generate results in the message Generating... sent by the bot

before the next message which contains the sample generated by the bot. This sample has no

prompt as none was provided by the user. Sending ;;generate but with any amount of text

written following it in the same message will result in the same functionality, but with the text

provided being used as a prompt to start the sample with.

Figure 4.5: An example of the ;;generate command being used without a prompt

31

4.6.3 Changing the Configuration

The ;;set model command is used to change the model used when generating text. However,

it can only be one of the four valid fresh model names.

Sending the message ;;set model results in the message ERROR: Argument required being

sent by the bot. Sending the message ;;set model followed by a valid fresh model name results

in the configuration being updated so that the model name is set to that given by the user.

However if the model name given is not a valid fresh model name, the message ERROR: Argument

required will be sent by the bot.

32

Chapter 5

Implementation

This chapter will detail how each program is implemented and the process of finetuning the

model used in the article generator.

5.1 Article Generator

The program is launched by running ArticleGenerator.py with arguments. But if no argu-

ments are provided, the GUI runs instead. This section will first step through how each of the

modules is used, both when the program is being used through the CLI and when the program

is being used through the GUI.

5.1.1 ArticleGenerator.py

When the article generator runs it first creates a parser. The creation of the parser involves

initialising an ArgumentParser object from the built in argparse package. The usage string

to be used in the help message is set, before each of the arguments are added.

Every argument is added as an optional argument, meaning none of the arguments are

required when parsing. Each of the arguments added has 2 aliases, a destination variable name

(dest), and a help message. Some arguments may also have a type, a default value, an an

action.

Alias

Each alias provides a way for the user to use the argument. An example of this is where

the argument with aliases -f and --filename can be used with either -f example.txt or

33

--filename example.txt.

Destination Variable

The destination variable name is a string that specifies the name of the variable to store the

value of the given argument in. An example of this is where the argument with dest set to

filename will have it’s value stored in the filename variable in the Namespace returned after

parsing.

Help Message

The help message is displayed when the optional argument -h or --help is used when launching

the program. An example of this is where the argument with help set to Print the generated

sample(s) to console. will cause this message to be printed next to -p, --print when the

parser prints the help message.

Type

The type of an argument has been specified via lambdas/functions which attempt to transform

the value, but throw an error if the value is not valid. This transformation has only been

implemented as just type casting, but the checks of valid values have varied in complexity.

These range from ensuring the value is positive, to ensuring the value is the name of a file that

exists. If any of these checks fail an ArgumentTypeError (from the argparse package) is raised

to indicate this. Upon raising this Error the help message that is normally printed when using

-h is printed, alongside a message that specifies which argument the error relates to and why

it has been raised.

An example of this is where an argument has its type set to the existing filename type

function. This function checks if the value is the name of a file that exists or not. If it is the

value is returned without being transformed, but if it isn’t an ArgumentTypeError is raised

saying the value “is not the name of a file that exists”.

Default Value and Action

An argument’s default is the value it takes if none has been specified by the user. This default

value can be set either explicitly by setting default to the desired value, or implicitly via the

action. If an argument has no default value then it will default to None instead.

34

An argument’s action specifies how the argument is handled by the parser. This can be set

by setting action to the desired value, but the default value is ’store’. ’store’ just stores

the value in a variable in the Namespace. ’store true’ is used by one of the arguments to

indicate that the argument takes no value, but if the argument is used it stores True. This also

sets the default value of the argument to False.

An example of an action being specified is where the action of an argument with the alias

-p is set to ’store true’. This means if -p is one of the arguments used, no value is required

after it and instead the value True is stored for the respective variable.

Passing Arguments to Generator

Once the arguments are parsed, articles are generated based on which arguments have been

parsed. But there are checks made before this.

First the program ensures that at least one way of outputting the articles is specified.

This can either be printing to the console or writing to a file. If neither of these is specified,

an Exception is thrown with a message explaining this. If the user specified to write the

articles to files and the filename of the file is the same as the filename of a specified input file

(i.e. filename, title filename, or content filename), then an Exception is thrown with a

message explaining this.

If these checks are passed to an instance of Generator. The method used on the Generator

instance depends on which arguments were defined by the user. If an argument for -f was

given Generator.generate from single file() is used with the argument for -f passed

to it, if instead an argument for -t was given Generator.generate from files() is used

with the arguments for -t and -c passed to it, but if instead and argument for -T was given

Generator.generate() is used with the arguments for -T and -C passed to it.

In all three of the above cases the arguments for -n, -p, -o, and -w are also passed to

the respective method in Generate. If the condition for multiple of these cases is satisfied the

earlier case executes, which is information provided in the help message to the user. However if

the condition for none of these cases are satisfied, an Exception is raised due to no input being

specified.

35

5.1.2 gui.py

The Gui class

The Gui class respects the singleton design pattern, meaning it should only be initialised once.

The constructor of this class should only be used internally, where the Gui.get instance()

class method is used to get the instance of the class. This method returns the instance of the

class but if the instance doesn’t already exist it is first created.

The constructor sets the class variable instance to the object being constructed if one

doesn’t already exist, otherwise an exception is raised. Then all of the instance variables are

initialised to None in order to make every instance variable in this object clear, allowing for

better maintainability. After this the Gui.create gui() method is called to create the GUI.

The Gui.create gui() method creates the main window using tkinter before setting the

title and size. The Gui.create home() method is then used to create the home screen. This

method creates and populates a tkinter LabelFrame object in order to create the home screen.

Objects in which the user inputs a value are stored in an instance variable so that their

value can be retrieved when necessary. The OptionMenu objects that represent the drop down

menus get their functionality by setting their command to the relevant method when initialising

them. These methods are triggered when the value of a drop down is updated, calling the

method with the new value.

If the new value is ’Text’ then the relevant text field becomes editable by changing its

state to ’normal’. Otherwise if there’s text in the field, a messagebox is used to ask the user if

they want to overwrite the contents of the respective text field. If the user chooses to continue

a filedialog is created where the user can select a file, where the filetypes are Text Files

(*.txt) and All Files (*.*). After the file is selected, the contents of the file is placed into the

text field and the text field is made uneditable by setting it’s state to ’disabled’.

The functionality of the submit button is set similarly by setting its command to the relevant

method when initialising it. This method first checks the required values have been inputted,

and performs basic error checking on numerical values, like making sure they can be cast to int

and ensuring they are not invalid values (e.g. not less than 1). Then it gets an instance of the

Generator class by using Generator.get instance() class method and generates articles from

it by using the Generator.generate as tuple(). When calling this method the title, initial

content, number of samples, and maximum words per samples, are values that are passed. The

return value is then used to create a SampleViewer object, which is an inner class of the Gui

class.

36

The SampleViewer class

The SampleViewer class represents a window used to display articles to the user. It’s constructor

takes a list of samples, each with a title and content, where the title is shared amongst the

samples. These values are stored and all instance variables are initialised in the constructor in

order to make every instance variable in this object clear, allowing for better maintainability.

After this the SampleViewer.create window() method is called, which creates and popu-

lates the window used to show the samples. The window is an instance of Toplevel from the

tkinter library and its title is set to the title of the article. Toplevel.grab set() is used so

that this window gains focus.

Buttons are created using SampleViewer.create buttons() with their state being updated

with SampleViewer.update buttons(). The window also contains a LabelFrame containing

the article text which is created with SampleViewer.create text frame() and updated with

SampleViewer.update sample().

In the window the LabelFrame contains the two text fields that show the title and content.

Below this LabelFrame are two buttons with a left arrow and right arrow, and their command

set to SampleViewer.previous sample() and SampleViewer.next sample() respectively.

These functions change the index of the current sample and ensure it doesn’t go out of the

bounds of the list of samples, and then use SampleViewer.update sample() to update the

currently displayed sample. SampleViewer.update sample() modifies the contents of the text

field containing the article content to that of the current sample.

5.1.3 generator.py

The Generator class respects the singleton design pattern, meaning it should only be initialised

once. The constructor of this class should only be used internally, where the

Generator.get instance() class method is used to get the instance of the class. This method

returns the instance of the class but if the instance doesn’t already exist it is first created.

Generate Articles

Generator.generate as tuple() is a static method that takes a string value representing the

title and optionally a string value representing the initial content, an integer representing the

number of articles of generate, and an integer representing the maximum number of words

generated in each article. It then generates a list of samples, each being a list that contains

two values, the first value being the title of the article and the second value being the content

37

of the article as returned by the Gpt2Handler instance.

Alongside the values specified, the three methods below also each optionally take an integer

representing the number of articles to generate, a boolean value representing whether or not

to print the article(s), a string value representing the name of the file to write the sample to

where None or the empty string means not to write to a file, and an integer value representing

the maximum number of words generated in each sample.

Generator.generate from single file() takes a string representing a filename and reads

its content, treating the first line as the title and the seconds line (if any) as the initial content.

These are then passed to the Generator.generate() method, returning the value it returns.

If the file has no second line the empty string is used instead.

Generator.generate from files() takes a string representing the filename of a file that

contains the title, and optionally a string representing the filename of a file that contains the ini-

tial content. The first line of each file is read before being passed to the Generator.generate()

method, and returning the value it returns. If no file is specified for the initial content the empty

string is used instead.

Generator.generate() takes a string representing a title, and optionally a string rep-

resenting the initial content. If no initial content was passed, the empty string is used in-

stead. These alongside the number of samples and maximum number of words are passed to

Gpt2Handler.generate as tuple(), which generates a list of samples, each of which is a list

where the first value is the title and the second value is the content. Each sample is then

converting into a string that consists of the title, followed by a newline character, followed by

the content of the sample. If the boolean specifying whether or not to print it to the con-

sole is set to True, the sample is printed. If a filename is given to write the samples to, the

Generator.write samples to file() is called with the filename and list of samples passed to

it.

Writing to file

Generator.write samples to file() is a method that controls how samples are written to

file. If there is only 1 sample in the list passed, Generator.write sample to file() is called

with the filename and sample passed to it. However if there are multiple samples, the filename

is modified for each sample so that an increasing number is appended to the filename before

the extension.

For example if the filename to write to is ’example.txt’ and 2 samples are to be generated,

38

the first sample is written to a file with the name ’example0.txt’ and the second sample is

written to a file with the name ’example1.txt’. This is done by looping through a list of

integers that start at 0 and end before the number of numbers. Each time a sample is written

to one of these files, Generator.write sample to file() is used to write the current sample

to the file with the current filename.

Generator.write sample to file() takes a filename and sample. It creates a file with the

given filename and writes the sample to it. The ’utf-8’ encoding is used, and

’surrogateescape’ is used to handle errors. This means that if attempting to decode a byte

that is to be written to the file, the Unicode byte data will is written out as a string. While

this isn’t ideal, this results in such errors having a minimal effect when writing the samples.

5.1.4 gpt2handler.py

There are constants stored in this file that dictate certain arguments used when generat-

ing samples (DEFAULT CONFIG), and that have lambdas that dictate how these are parsed

(GENERATE ARGUMENT PARSER). These are in the form of dictionaries with keys being the names

of arguments of gpt 2 simple.generate() and values being the respective value/lambda.

The Gpt2Handler class respects the singleton design pattern, meaning it should only be

initialised once. The constructor of this class should only be used internally, where the

Gpt2Handler.get instance() class method is used to get the instance of the class. This

method returns the instance of the class but if the instance doesn’t already exist it is first

created.

When the Gpt2Handler instance is created the TensorFlow session is started using

gpt 2 simple.start tf sess(). Then Gpt2Handler.download model() is used to check if

the model is downloaded and to download it if it isn’t. Then Gpt2Handler.load model() is

used to load the model into the TensorFlow session by using gpt 2 simple.load gpt2().

Gpt2Handler.generate() takes a string representing the title and optionally a string rep-

resenting the initial content, an integer representing the number of samples to generate, and

an integer representing the maximum number of words to generate for each sample.

First all newline characters are removed from the initial content, then the title and initial

content are used to create a string in the proper format for the finetuned GPT-2 model. This

format starts with a start of text token followed by a title token on the next line, the title of

the line after, a content token on the following line, and finally the initial content on the last

line. This string is used as the prefix when generate samples.

39

For example for the title ’This is an example title’ and initial content ’This is an

example initial content’, the string created will be ’<|startoftext|>\n=====TITLE=====

\nThis is an example title\n=====CONTENT=====\nThis is an example initial

content’ where ’\n’ represents a newline character.

Gpt2Handler.parse generate arguments() is then used to convert the values in

DEFAULT CONFIG to the correct format. gpt 2 simple.generate() is then called with the

TensorFlow session, the prefix, the number of samples, the maximum number of words per

sample, and the parsed args after being unpacked with the ** operator. The list of samples

generated by the model are then returned by this method.

Gpt2Handler.generate as tuple() takes the same values as Gpt2Handler.generate()

and calls Gpt2Handler.generate() with them. But then uses

Gpt2Handler.sample to tuple() on each of the generated samples to turn them into a list

where the first value is the title and the second value is the content.

Gpt2Handler.sample to tuple() takes a single sample and takes only the text after the

title token. Then any tokens that start with <| and end with |> are removed before replace

all instances of multiple spaces with a single space. After this the content token is split upon,

leaving a list where the first value is the title and the second value is the content.

5.2 Discord Bot

This program is launched by running bot.py. It is designed to be solely interacted with via

Discord.

5.2.1 bot.py

When running this file it first reads the apikey from a file called ’aipkey.txt’, where if none

is found then the program quits. If one was found a discord.ext.commands.Bot object is

created with the command prefix set to ’;;’. Any discord message must begin with ’;;’

followed by the command name (or an alias) to be processed as a command. After this every

file that ends with ’.py’ in the cogs folder is loaded into the bot. Once this is complete, the

bot is ran with the api key using client.run(), passing the api key to it.

40

5.2.2 cogs/setup.py

This cog is responsible for anything related to the setup of the bot. Currently is only prints

’Bot is ready’ to the console once the bot is ready to receive commands. However this

functionality was separated from the other cogs to allow for better expandability in future and

ensure that each cog adheres to the single responsibility design principle.

5.2.3 cogs/basiccommands.py

This cog is responsible for basic commands that do not have functional significance to the

operation of the bot. Currently it only contains a command called ping that when used sends

a message containing the network latency of the bot. While this can be used for debugging

purposes, it is not a crucial function of the bot. However this functionality was separated from

the other cogs to allow for better expandability in future and ensure that each cog adheres to

the single responsibility design principle.

5.2.4 cogs/utilities.py

This cog is responsible for commands related to core functional elements of the bot such as

unloading/loading/reloading other cogs, updating the bot from the git repository, and shut-

ting the bot down. These commands are called unload, load, reload, update, and stop

respectively. None of them take any arguments.

5.2.5 cogs/gpt2.py

This cog is responsible for the functionality of the bot that is the focus of this project, that is

interacting with GPT-2 models. When loaded the constructor runs which loads the configura-

tion from a file called gpt2.config, if it doesn’t exist the default configuration is used instead.

After this the TensorFlow session is started using gpt 2 simple.start tf sess() and then

the model is loaded into the TensorFlow session using gpt 2 simple.load gpt2().

This file contains multiple constants including a list of valid model names, the default

config (a dictionary from config names to their respective default values), and a dictionary

from configuration names to lambdas which parse the respective config value.

This cog provides multiple commands to alter the configuration, alongside a command to

download a fresh GPT-2 model and a command to generate a sample. This last command is

called ;;gpt2 generate with aliases of ’generate’ and ’gpt2’, the latter of which was chosen

41

as this command is the focus of this cog and thus the command that will most often be used.

The Generate Command

The generate command is executed by the user sending a message that starts with ;;generate,

followed by the prompt (if any). First a check is made to ensure the model set in the config-

uration is downloaded by using the gpt 2 simple.is gpt2 downloaded() method. If it isn’t

downloaded an error message is sent saying this, otherwise the function continues with gener-

ating the sample. A message is then sent in response to notify the user that a sample is being

generated. Then the configuration is parsed before being passed to gpt 2 simple.generate()

with the TensorFlow session and the prompt specified by the user. This prompt is used as the

prefix to start the generated text. Once this text has been generated, the generated sample is

sent as a Discord message.

Auxiliary Commands

This cog also has commands that facilitate generating samples, including commands that down-

load fresh GPT-2 models and commands that modify the configuration. The

;;gpt2 download model command with an alias of ’download model’ downloads the fresh

GPT-2 model specified by the configuration. If an argument is passed in the message that

triggered this command, that argument is used as the name of the model instead. If this name

is not a valid fresh GPT-2 model instead an error message will be sent saying this. If the model

is successfully downloaded, a confirmation message is said to notify the user of this.

Configuration Commands

There are 5 commands that modify the configuration. These include commands dedicated to

changing a specific value in the config, to commands that can modify the whole configuration.

Some of the following commands are:

• ;;gpt2 reset config: This command has an alias of ’reset config’. If an argument

is passed in the message that triggered this command an error message is sent saying this.

Otherwise the configuration is set to a copy of DEFAULT CONFIG, and the content of the

new configuration is written to gpt2.config.

• ;;gpt2 set config: This command has aliases of ’set config’ and ’config’. If no

argument is passed in the message that triggered this command an error message is

sent saying this. Otherwise the configuration is set based on the arguments provided

42

by the user. Each argument is seperated by a space and is expected to be in the format

config=value, where config is the name of a configuration and value is the correspond-

ing value. If an invalid config or value is provided by the user, an error message is sent

saying this and no changes are made to the configuration. Only once all checks pass does

the configuration get updated.

• ;;gpt2 set length: This command has an alias of ’set length’. If no argument is

passed in the message that triggered this command an error message is sent saying this.

If the argument is not an integer or not between 1 and 1023 (inclusive) a different error

message is sent saying this. If however these checks have been passed, the ’length’ in

config is set to the value given by the argument. This sets the number of words generated

samples will be.

• ;;gpt2 set model: This command has an alias of ’set model’. If no argument is passed

in the message that triggered this command an error message is sent saying this. If the

argument is not the name of one of the four fresh models a different error message is sent

saying this. If however these checks have been passed, the ’model name’ in config is set

to the value given by the argument. This sets the fresh model samples will be generated

using.

43

Chapter 6

Evaluation

6.1 Finetuning the Article Generator Model

When finetuning the model used in the article generator, a Google Colaboratory notebook was

utilised which “uses either a Nvidia T4 GPU or an Nvidia K80 GPU” [32]. This notebook is

adapted from a publicly available notebook called “Train a GPT-2 Text-Generating Model w/

GPU For Free” [32]. The use of such Google Colaboratory notebooks allows for access to high

performance hardware, albeit with time restrictions on how long a session can run for before

being reset. “Colab does not publish these limits, in part because they can (and sometimes do)

vary quickly” [33].

Before the dataset was finetuned on it was pre-processed to ensure that it was in a plain

text format that could be easily replicated by the GPT-2 models. Each article was a string in

the following format: a start of text token and a new line character, followed by a title token

and a new line character, followed by the title of the article and a new line character, followed

by the content token and a new line character, followed by the content of the article and a new

line character, followed by an end of text token. Where each of these tokens are as follows:

• Start of text token: ’<|startoftext|>’

• Title token: ’=====TITLE=====’

• Content token: ’=====CONTENT=====’

• End of text token: ’<|end of text|>’

Initially all of these were written to a single text file that was to be used for finetuning,

however this resulted in an out of memory error when attempting to finetune the 124M model

44

on this dataset using the Google Colaboratory notebook. For this reason the dataset was split

into multiple text files, with a new file being created every time a file exceeded 52MB. This

soft limit was selected because it alleviated the out of memory error and further increasing it

resulted in the error still occurring.

Splitting the text files in this way resulted in 12 files. The process of finetuning the model on

all of these files involved first finetuning the fresh 124M model on the first file, then finetuning

this model on the next file. This was repeated until all files had been finetuned on. Each time

the model was finetuned on a single file the finetuning was for 1000 steps with a learning rate

of 1e-4.

6.2 Limitations

Due to the size of these models there can a significant delay when generating samples and

articles. This is the case for even the smallest fresh model (124M) but the problem is amplified

for the larger model sizes. This can be reduced by ensuring the version of TensorFlow with

GPU support is installed on a machine with a GPU that meets the hardware requirements, but

the delay will still remain noticeable using modern hardware.

Knowledge distillation “is a compression technique in which a compact model - the student

- is trained to reproduce the behaviour of a larger model - the teacher - or an ensemble of

models” [34]. This technique has been “applied to distill GPT-2” [35] to produce a model with

a size that is “37% less, and is twice as fast as its OpenAI counterpart, while keeping the same

generative power” [35]. This model also reduces the risk of encountering an out of memory

error due to having insufficient RAM (Random Access Memory) as it even “runs smoothly on

an iPhone 7” [35].

In the case for the Discord Bot this model would not have to be finetuned and only needs

minor code changes to accommodate for this model as the program expects models to be one

of the four fresh models, or a finetuned version of them. For the article generator the model

would have to be finetuned such that it produces samples in the expected format, but once this

is done it can be used in place of model that is currently used.

Due to the way the model generates text it may start writing a new sample/article before

the specified word limit is reached. In this case the text generated for the new sample/article

can be truncated, but this results in a smaller output without shortening the time taken to

generate the sample.

The small size of the model used in the article generator can lead to problems such as

45

repeated text, and the generated text not making logical sense despite making grammatical

sense. These problems can be reduced by using a larger model (after finetuning) but have a

heavy resource cost. The gpt-2-simple Python library also comments “Currently, a modern

single GPU cannot finetune the 774M GPT-2 model or larger” [36]. But software optimisations

may allow for finetuning the 774M model [37].

6.3 Own Research Contributions

When finetuning the fresh models on a dataset the samples generated by the models quickly

adhere to the format of the dataset, even when this format may deviate heavily from regular

natural language. This will be showcased in the finetuning of the 124M fresh model on 3

datasets with different formats. For each dataset a new fresh model was used instead of using

the model finetuned on the previous dataset.

The fresh model generates samples of varying formats common in internet text, with all of

these samples being natural language. These samples also include features common in internet

text that might not necessarily be natural language, such as links. The only exception to this

is the end of text token (’<|endoftext|>’) which is used to represent the end of a piece of

text in a sample. This is generated as a side effect of the finetuning process where the end of

text token is inserted between separate pieces of text.

The first dataset is the dataset of news articles used to finetune the article generator model

containing approximately 7,500 articles. The format of this dataset is described in the previous

section. When finetuning the model generates a single sample every 200 steps, with the first

sample being generated after step 200. After step 400 the second sample is generated, and it

was the first sample to include the tokens used in this format. These token were also used in

the same order as those in the dataset. Further samples generated after more steps also had

this format, including a sample in which there were 2 separate articles as 2 separate sets of

tokens were generated in the same sample.

The second dataset is a dataset of cocktail recipes containing approximately 1,000 recipes.

Each cocktail recipe is formatted so that the name of the recipe is in the first line followed by a

colon and ingredients in the lines below. Each ingredient is on its own line with the name of the

ingredient followed by a hyphen and then the quantity of the ingredient. Each of these recipes

is separated by an end of text token, as those used in the dataset for the article generator

model. When finetuning the second sample which was printed after 400 steps generated recipes

of this format.

46

The third dataset is an exported WhatsApp chat log containing approximately 30,000 mes-

sages. This is from a WhatsApp group chat containing 9 members. Each message is in the

following format: DD/MM/YYYY, HH:MM - NAME: MESSAGE. Where DD/MM/YYYY is the date the

message was sent, HH:MM is the time the message was sent, NAME is the first name of the author of

the message, and MESSAGE is the content of the message. These messages can also include emoji

characters, which are characters that did not appear in the original dataset the fresh models

were finetuned on. Instead of text WhatsApp messages can be media such as images, videos,

audio, and more, such messages have their message content replaced with ’<Media omitted>’.

The first sample generated when finetuning (after 200 steps) exclusively adhered to the

format of messages in the dataset. The date and time of each message generated was the same

as or after that of the previous message, with multiple messages often being generated with the

exact same time before a message was generated in the next minute. There were also instances

of messages with a time a few minutes after the previous message’s which were less common,

and messages with a time that is hours after the last message’s which were even less common.

This accurately parallels the time between messages being sent from the chat log.

The names in the generated messages were exclusively names of members in the group

chat. With the differing messaging styles of different members seeming to be reflected in the

generated messages. One example of this is slang terms, certain vocabulary, and use of emoji in

the messages of certain members but not in others, accurately reflecting the words/emojis used

in messages from some members that aren’t used by others. Another example is media being

sent by some members but rarely by others, with this difference in the frequency of media being

sent is also accurately reflected in the generated messages, where members that send emojis

more frequently have messages generated under their name use emojis more frequently.

One specific example is messaging expressing laughter often being sent after messages of

’<Media omitted>’. This reflects the commonality of humorous images/videos sent in the

WhatsApp chat such as internet memes. Such messages are followed by multiple other members

sending messages such as ’lol’, ’lmao’, and laughter emojis. Another specific example is the

use of nicknames in messages referring to them, including a member’s name being shortened

and a member’s full name being used by another member.

This highlights the ability of even the smallest GPT-2 model being able to generate formats

that involve features that heavily deviate from natural language, while retaining the ability

to generate natural language where it makes sense. GPT-2 is also able to generate natural

language in the style of multiple different authors after being finetuned on text that includes

47

text written by all of them, with these differing writing styles being used in a single sample

while still making sense in context.

Originally the 355M model was finetuned on this dataset for 85,000 steps. However this

resulted in the model overfitting the dataset and returning completions that were essentially

recited from the dataset. The 124M was then used instead to reduce this problem of overfitting.

While this helped reduce the problem, overfitting eventually still occurred. One reason for this

could be the dataset being too small. Despite the WhatsApp group chat containing more than

the 30,000 in the exported dataset, when using the built-in exporting feature to export the chat

to a text file, it would only include the 30,000 most recent messages. This led to difficulty in

attempting to maximise the quality of generated samples by finetuning for more steps, as the

whole chat could not be exported to provide the larger dataset needed.

48

Chapter 7

Legal, Social, Ethical and

Professional Issues

7.1 The Black Box Problem

Many machine learning models can be described as black boxes. “Black-box models take a

sequence of query inputs, and return corresponding outputs, while keeping internal states such

as model architecture hidden” [38]. This can create obscurity in why any complex machine

learning model has given a certain output.

Due to the complex structure of neural networks, it can be difficult to derive meaning from

the weights and biases that make it up. This problem is exacerbated in the case of deep

neural networks as they have a much larger number of parameters and can have more complex

architectures that further frustrate how to conceptually understand how they work.

The very large size of GPT-2 models has contributed to the high quality of the text they

generate after learning from the large dataset they were trained on. The large number of pa-

rameters has resulted in a lack of precise understanding to why it’s architecture and parameters

are conducive to it generating high quality samples, as even the smallest GPT-2 model has 124

million parameters.

In the European Union’s (EU) General Data Protection Regulation (GDPR) recital 71 states

“[the data subject should have] the right [...] to obtain an explanation of the decision reached”

[39]. This means that even in the case of an artificial intelligence system reaching a conclusion

based on a user’s data, the responsible organisation must be able to explain why this decision

was reached. However if key components of the system that came to this decision are black

49

box system, not even the organisation would know why this decision has been reached.

As machine learning models and artificial intelligence perform better at increasingly complex

tasks, reliance on them can also increase. It is for this reason that there is also an increasing

importance to understanding why these systems produce the results they do, in order to increase

trust in them and to comply with modern data protection laws.

Aiming to decrease the size of models while maintaining the quality of samples they generate

can help reduce this problem. However this alone does not solve the problem of the obscurity

complex artificial intelligence systems have.

7.2 Fake News and Propaganda

The article generator model was finetuned on a dataset based on the All The News dataset.

While this dataset contained over 200,000 articles from various publications. Over 20,000 of

these articles were published by Breitbart, which is the highest number of articles of any single

publication in the dataset as shown in Figure 7.1.

Figure 7.1: Number of articles in All The News by publication[25]

Breitbart is said to be a “far-right website” [40] that has published “material that has been

called misogynist, xenophobic and racist” [41] and be a “source of controversy - for liberals and

even many traditional conservatives” [41] alongside “viral conspiracy theories” [42].

In a report written by the creators of GPT-2 - OpenAI - it is noted that there is “concern

that [GPT-2’s] capabilities could lower costs of disinformation campaigns” [3]. While monitoring

50

performed with OpenAI “did not find evidence of GPT-2 direct misuse in publicly-accessible

forums” [3], this does not exclude the possibility of such AI systems being misused, as OpenAI

“did see evidence of discussion of misuse” [3]. The four ideological positions tested were “white

supremacy, Marxism, jihadist Islamism, and anarchism” [43] and it was “demonstrated that

it’s possible to create models that can generate synthetic propaganda for these ideologies” [43].

One real world example of bias being introduced into AI systems “is Microsoft’s “Tay”

chatbot, a Twitter bot that replied based on interactions with Twitter users. Internet trolls

Tweeted intentionally offensive phrases at Tay, effectively poisoning its dataset [...], resulting

in offensive Tweets.” [3]

Because of this it was decided that articles published by Breitbart in the All The News

dataset would be excluded when generating and formatting the dataset used to finetune the

GPT-2 model on. The ideologically extreme sentiment seen from Breitbart has the potential

to “poison” the dataset the model is finetuned on, which could introduce this undesirable bias

to the model. Removing these articles from the dataset should reduce this bias appearing in

articles generated by the model.

However this does not exclude the possibility of GPT-2 models being used for misuse. GPT-

2 language models can be used “to generate conditional synthetic text samples of unprecedented

quality” [26], including “tasks like question answering, reading comprehension, summarization,

and translation” [26]. Finetuning “offers the potential for even more detailed control over

generated samples for example, [if finetuned] on the Amazon Reviews dataset [GPT-2 be used

to] write reviews conditioned on things like star rating and category.” [26] Such a model would

allow for easier manipulation of product reviews.

A tool that utilises GPT-2 models and increases their ease of use could make it easier for

bad actors to misuse the models. But he range of ways the fictional article generator can be

used in misuse has been restricted as its model has been finetuned on a specific dataset of

news articles. However it can potentially be used in producing misleading and/or ideological

news articles. The risk of this has been reduced by using the 124M model which is smallest

available fresh GPT-2 model provided by OpenAI, as OpenAI states “the misuse risk of [the

355M model] is higher than that of [the 124M model]”[26].

Informal testing has shown that it is difficult to introduce specific false information in the

generated article beyond the optional human written content to start the article. This further

restricts the ability of bad actors using using this tool to generate news articles in order to

mislead and spread disinformation.

51

However this does not eliminate the possibility of a skilled bad actor creating a dataset of

ideologically biased or propagandist news articles, and formatting such a dataset to the format

used by the article generator tool, then finetuning a larger GPT-2 model on this dataset.

This model can then replace the model used in the article generator, allowing it to produce

malicious fictional news. However such an attack is unlikely as such a bad actor with the

sufficient knowledge would not gain a proportional benefit to training a specific model to be

used in this tool.

52

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This project has aimed to create 2 programs that utilise GPT-2 and allow users to generate text

using GPT-2 without technical knowledge in natural language processing or machine learning.

This involved designing and implementing a program that uses a finetuned model, alongside a

program that can allow users to use any GPT-2 model (fresh or finetuned) via Discord.

This process involved a GPT-2 model being finetuned so that samples produced are in a

specified format that could be properly parsed by the program. Despite GPT-2 specialising

is natural language generation, it was possible to finetune a fresh model such that generated

samples reliably adhere to a desired format.

The existence of libraries that facilitate the use of GPT-2 allows for much more elegant

interaction with GPT-2 models. This includes automating downloading models, finetuning

models, and using models to generate text as part of a software system.

The propensity for GPT-2 models to learn formats that deviate from natural language shows

their capacity to provide utility in applications beyond pure natural language processing. This

is especially useful in use cases in which natural language processing is required alongside

textual structures that are more formal.

The Discord Bot allows for a very accessible way of using GPT-2 as it allows the user to

interact with GPT-2 via Discord. Discord has clients for Windows, Mac, Linux, Android, iOS,

and can even be used via a web browser. This means that most users would be able to use the

Discord Bot as long as they have an internet connection. The Discord Bot also only needs a

single Administrator to set it up then as long as it is running, users can interact with it via any

53

Discord server it has been added to.

Throughout the duration of this project it has been made clear that language models in-

cluding GPT-2 are very powerful and have the potential to be utilised to do a lot more than

just generating plain text. As more powerful language models are developed this potential will

grow, increasing the novel ways in which language models can be used.

8.2 Future Work

While the article generator is capable of generating high quality text, this can be improved

by starting with a larger fresh model when finetuning. This program could use the 1558M

model as this is the largest model and the original size of GPT-2, or even use larger and more

powerful models developed in future. However this could require constraints due to modern

hardware to be alleviated via software and/or hardware optimisations. Once such a model has

been finetuned, using it to generate text is comparatively much computationally easier but this

will also come with performance costs compared to smaller models.

This tool can also be improved by improving the efficiency of the model by using a dis-

tilled version of GPT-2 such as the DistilGPT-2 model created by HuggingFace, or even are

comparable small language model. The time taken to generate articles could be substantially

reduced due to the smaller size of such models, allowing for much better performance. This

improved performance could even increase the viability of generating such content directly on

smart phones.

The article generator tool could also be built upon to create a web app. This would substan-

tially reduce the hardware and software requirements, as it would allow the tool to be accessed

via a web browser. This could also require all processing to be done server side when generating

text, the impact of which can be reduced by using a model that uses reduced computational

resources.

While the Discord Bot does have functionality that allows it to use any finetuned GPT-2

model the administrator wishes, this aspect of the bot could be further developed to improve

the usability of this feature and streamline the process of adding these models to the bot e.g.

allowing the bot to download models via a provided link. This could even allow for users to

add models to an instance of the bot they have access to.

54

References

[1] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models

are unsupervised multitask learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[3] I. Solaiman, M. Brundage, J. Clark, A. Askell, A. Herbert-Voss, J. Wu, A. Radford,

G. Krueger, J. W. Kim, S. Kreps, M. McCain, A. Newhouse, J. Blazakis, K. McGuffie,

and J. Wang, “Release strategies and the social impacts of language models,” 2019.

[4] Minimaxir, “gpt-2-simple.” https://github.com/minimaxir/gpt-2-simple/commit/

a4da3ff0f054523d8cf85d98ae42cdd2d8dc7007, 2019.

[5] Discord, “Discord jobs and company information.” https://discordapp.com/company,

Mar 2020.

[6] K. Andrej, “The unreasonable effectiveness of recurrent neural networks.” https://

karpathy.github.io/2015/05/21/rnn-effectiveness/, May 2015.

[7] J. Alammar, “Visualizing a neural machine translation model (mechan-

ics of seq2seq models with attention).” https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/,

May 2018.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-

works,” 2014.

[9] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical ma-

chine translation,” 2014.

55

https://github.com/minimaxir/gpt-2-simple/commit/a4da3ff0f054523d8cf85d98ae42cdd2d8dc7007
https://github.com/minimaxir/gpt-2-simple/commit/a4da3ff0f054523d8cf85d98ae42cdd2d8dc7007
https://discordapp.com/company
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate,” 2014.

[11] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based

neural machine translation,” 2015.

[12] J. Alammar, “The illustrated transformer.” http://jalammar.github.io/

illustrated-transformer/, Jun 2018.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” 2017.

[14] Minimaxir, “minimaxir/gpt-2-simple/readme.md.” https://github.com/minimaxir/

gpt-2-simple/blob/3018ced23fc0494d59f74ac2ac7b0bf0be95bb07/README.md, Jan

2020.

[15] TensorFlow, “tf.random.set random seed: Tensorflow core r1.15.” https://www.

tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v1/set_random_seed,

Jan 2020.

[16] Openai, “openai/gpt-2/interactive conditional samples.py.” https://github.

com/openai/gpt-2/blob/0574c5708b094bfa0b0f6dfe3fd284d9a045acd9/src/

interactive_conditional_samples.py, Jan 2020.

[17] bybaes20, “I made my ai write my english paper.” https://cymetric1.wordpress.

com/2019/10/22/fun-with-gpt-2-i-made-my-ai-to-write-my-english-paper/, Nov

2019.

[18] TensorFlow, “tf.train.adamoptimizer: Tensorflow core r1.15.” https://www.tensorflow.

org/versions/r1.15/api_docs/python/tf/compat/v1/train/AdamOptimizer, Mar

2020.

[19] TensorFlow, “tf.train.gradientdescentoptimizer: Tensorflow core r1.15.”

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/

GradientDescentOptimizer, Mar 2020.

[20] R. Haleva, “What is gradient accumulation in deep learning?.” https://

towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa,

Jan 2020.

56

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://github.com/minimaxir/gpt-2-simple/blob/3018ced23fc0494d59f74ac2ac7b0bf0be95bb07/README.md
https://github.com/minimaxir/gpt-2-simple/blob/3018ced23fc0494d59f74ac2ac7b0bf0be95bb07/README.md
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v1/set_random_seed
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v1/set_random_seed
https://github.com/openai/gpt-2/blob/0574c5708b094bfa0b0f6dfe3fd284d9a045acd9/src/interactive_conditional_samples.py
https://github.com/openai/gpt-2/blob/0574c5708b094bfa0b0f6dfe3fd284d9a045acd9/src/interactive_conditional_samples.py
https://github.com/openai/gpt-2/blob/0574c5708b094bfa0b0f6dfe3fd284d9a045acd9/src/interactive_conditional_samples.py
https://cymetric1.wordpress.com/2019/10/22/fun-with-gpt-2-i-made-my-ai-to-write-my-english-paper/
https://cymetric1.wordpress.com/2019/10/22/fun-with-gpt-2-i-made-my-ai-to-write-my-english-paper/
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v1/train/AdamOptimizer
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v1/train/AdamOptimizer
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/GradientDescentOptimizer
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/GradientDescentOptimizer
https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa
https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa

[21] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with sublinear memory

cost,” 2016.

[22] Minimaxir, “minimaxir/gpt-2-simple/memory saving gradients.py.” https://github.

com/minimaxir/gpt-2-simple/blob/af3bca4a48ea8fec5cbae040155f3a495a2df387/

gpt_2_simple/src/memory_saving_gradients.py, Jul 2019.

[23] Rapptz, “Rapptz/discord.py.” https://github.com/Rapptz/discord.py/tree/

ade8d03f546c915d8015439da8aa05ffe18a6184, Nov 2019.

[24] Rapptz, “Commands.” https://discordpy.readthedocs.io/en/v1.2.5/ext/

commands/commands.html, Nov 2019.

[25] A. Thompson, “All the news.” https://www.kaggle.com/snapcrack/all-the-news/

version/4, Aug 2017.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Better language

models and their implications.” https://openai.com/blog/better-language-models/,

Dec 2019.

[27] A. King, “Talk to transformer.” https://talktotransformer.com/, Jul 2019.

[28] HuggingFace, “Write with transformer.” https://transformer.huggingface.co/.

[29] TensorFlow, “Gpu support: Tensorflow.” https://www.tensorflow.org/install/gpu,

Mar 2020.

[30] Rapptz, “Cogs.” https://discordpy.readthedocs.io/en/v1.2.5/ext/commands/

cogs.html, Nov 2019.

[31] Rapptz, “Creating a bot account.” https://discordpy.readthedocs.io/en/v1.2.5/

discord.html, Nov 2019.

[32] Minimaxir, “Train a gpt-2 text-generating model w/ gpu for free.” https://colab.

research.google.com/drive/1VLG8e7YSEwypxU-noRNhsv5dW4NfTGce, Nov 2019.

[33] Google, “Colaboratory.” https://research.google.com/colaboratory/faq.html, Apr

2020.

[34] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter,” 2019.

57

https://github.com/minimaxir/gpt-2-simple/blob/af3bca4a48ea8fec5cbae040155f3a495a2df387/gpt_2_simple/src/memory_saving_gradients.py
https://github.com/minimaxir/gpt-2-simple/blob/af3bca4a48ea8fec5cbae040155f3a495a2df387/gpt_2_simple/src/memory_saving_gradients.py
https://github.com/minimaxir/gpt-2-simple/blob/af3bca4a48ea8fec5cbae040155f3a495a2df387/gpt_2_simple/src/memory_saving_gradients.py
https://github.com/Rapptz/discord.py/tree/ade8d03f546c915d8015439da8aa05ffe18a6184
https://github.com/Rapptz/discord.py/tree/ade8d03f546c915d8015439da8aa05ffe18a6184
https://discordpy.readthedocs.io/en/v1.2.5/ext/commands/commands.html
https://discordpy.readthedocs.io/en/v1.2.5/ext/commands/commands.html
https://www.kaggle.com/snapcrack/all-the-news/version/4
https://www.kaggle.com/snapcrack/all-the-news/version/4
https://openai.com/blog/better-language-models/
https://talktotransformer.com/
https://transformer.huggingface.co/
https://www.tensorflow.org/install/gpu
https://discordpy.readthedocs.io/en/v1.2.5/ext/commands/cogs.html
https://discordpy.readthedocs.io/en/v1.2.5/ext/commands/cogs.html
https://discordpy.readthedocs.io/en/v1.2.5/discord.html
https://discordpy.readthedocs.io/en/v1.2.5/discord.html
https://colab.research.google.com/drive/1VLG8e7YSEwypxU-noRNhsv5dW4NfTGce
https://colab.research.google.com/drive/1VLG8e7YSEwypxU-noRNhsv5dW4NfTGce
https://research.google.com/colaboratory/faq.html

[35] HuggingFace, “Distilgpt-2 model checkpoint.” https://transformer.huggingface.co/

model/distil-gpt2, Apr 2020.

[36] Minimaxir, “minimaxir/gpt-2-simple.” https://github.com/minimaxir/gpt-2-simple/

blob/master/gpt_2_simple/gpt_2.py, Feb 2020.

[37] Minimaxir, “Oom error with new 774m model when running in colab · issue #108 ·

minimaxir/gpt-2-simple.” https://github.com/minimaxir/gpt-2-simple/issues/108,

Dec 2019.

[38] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards reverse-engineering black-box

neural networks,” 2017.

[39] “Lex access to european union law.” https://eur-lex.europa.eu/eli/reg/2016/679/

oj, Apr 2016.

[40] D. Weigel, “Is trump’s new chief strategist a racist? crit-

ics say so..” https://www.washingtonpost.com/politics/

is-trumps-new-chief-strategist-a-racist-critics-say-so/2016/11/14/

b72e2ab0-aa9d-11e6-a31b-4b6397e625d0_story.html, Nov 2016.

[41] M. Grynbaum and J. Herrman, “Breitbart rises from outlier to potent

voice in campaign.” https://www.nytimes.com/2016/08/27/business/media/

breitbart-news-presidential-race.html, Aug 2016.

[42] L. Robertson, “Trump’s isis conspiracy theory.” https://www.factcheck.org/2016/06/

trumps-isis-conspiracy-theory/, Nov 2016.

[43] I. Solaiman, J. Clark, and M. Brundage, “Gpt-2: 1.5b release.” https://openai.com/

blog/gpt-2-1-5b-release/, Nov 2019.

58

https://transformer.huggingface.co/model/distil-gpt2
https://transformer.huggingface.co/model/distil-gpt2
https://github.com/minimaxir/gpt-2-simple/blob/master/gpt_2_simple/gpt_2.py
https://github.com/minimaxir/gpt-2-simple/blob/master/gpt_2_simple/gpt_2.py
https://github.com/minimaxir/gpt-2-simple/issues/108
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.washingtonpost.com/politics/is-trumps-new-chief-strategist-a-racist-critics-say-so/2016/11/14/b72e2ab0-aa9d-11e6-a31b-4b6397e625d0_story.html
https://www.washingtonpost.com/politics/is-trumps-new-chief-strategist-a-racist-critics-say-so/2016/11/14/b72e2ab0-aa9d-11e6-a31b-4b6397e625d0_story.html
https://www.washingtonpost.com/politics/is-trumps-new-chief-strategist-a-racist-critics-say-so/2016/11/14/b72e2ab0-aa9d-11e6-a31b-4b6397e625d0_story.html
https://www.nytimes.com/2016/08/27/business/media/breitbart-news-presidential-race.html
https://www.nytimes.com/2016/08/27/business/media/breitbart-news-presidential-race.html
https://www.factcheck.org/2016/06/trumps-isis-conspiracy-theory/
https://www.factcheck.org/2016/06/trumps-isis-conspiracy-theory/
https://openai.com/blog/gpt-2-1-5b-release/
https://openai.com/blog/gpt-2-1-5b-release/

Appendix A

Extra Information

List of Figures

2.1 A high level visualisation of the architecture of a transformer model 8

2.2 A visualisation of the architecture of a transformer model and its components . 9

2.3 A visualisation of an encoder and its components 10

2.4 A visualisation of an decoder and its components 12

4.1 The Architecture Diagram for the Article Generator 23

4.2 The Architecture Diagram for the Discord Bot 24

4.3 The Article Generator’s Home Screen as it First Appears 27

4.4 The Article Generator’s Article Viewer as it First Appears 28

4.5 An example of the ;;generate command being used without a prompt 31

7.1 Number of articles in All The News by publication[25] 50

59

Appendix B

User Guide

B.1 GPT2 Article Generator

An application to allow for generating news articles using OpenAI1’s GPT-2 text generator2.

The model used for this was further trained on All The News3, a dataset of over 200,000 news

articles by components.one4.

B.1.1 Setup

The repository can be cloned as normal:

shell git clone https://github.com/DanTm99/gpt2-article-generator.git

The model this program uses is hosted on Google Drive and can be downloaded from here5.

The contents of this archive should be extracted to the gpt2-article-generator folder so

that the checkpoint is in the gpt2-article-generator folder.

Navigate into the folder:

shell cd gpt2-article-generator

To use this with your GPU you must have and NVIDIA GPU with a CUDA Compute

Capability 3.5 or higher.

If you have the required hardware you must install the required software on your system as

shown here6.

Install the required packages as normal to use this with GPU support:
1<https://openai.com>
2<https://openai.com/blog/better-language-models/>
3<https://www.kaggle.com/snapcrack/all-the-news>
4<https://components.one/>
5<https://drive.google.com/open?id=1Lmh7JBRkbC0jEvGtoZwVL30PT8PIt9qm>
6<https://www.tensorflow.org/install/gpu#software_requirements>

60

https://openai.com
https://openai.com/blog/better-language-models/
https://www.kaggle.com/snapcrack/all-the-news
https://components.one/
https://drive.google.com/open?id=1Lmh7JBRkbC0jEvGtoZwVL30PT8PIt9qm
https://www.tensorflow.org/install/gpu#software_requirements

shell pip3 install -r requirements.txt

To use this without GPU support use the following command instead:

shell pip3 install -r requirements-no-gpu.txt

B.1.2 Usage

To open the GUI use the following command:

shell python3 ArticleGenerator.py

This application can also be used via the command line. For detailed help use the following

command:

shell python3 ArticleGenerator.py -h

61

B.2 GPT2 Bot

A simple discord bot written in Python that utilises existing Python libraries to allow for simple

interaction with OpenAI7’s GPT-2 text generator8.

B.2.1 Setup

Clone the repository and navigate into it:

shell git clone https://github.com/DanTm99/gpt2-bot.git cd gpt2-bot

To use this with your GPU you must have and NVIDIA GPU with a CUDA Compute

Capability 3.5 or higher.

If you have the required hardware you must install the required software on your system as

shown here9.

Install the required packages as normal to use this with GPU support:

shell pip3 install -r requirements.txt

To use this without GPU support use the following command instead:

shell pip3 install -r requirements-no-gpu.txt

Create apikey.txt containing the api key for your bot:

shell echo "[API KEY]" > apikey.txt Replace [API KEY] with your api key.

B.2.2 Usage

Run bot.py to start the bot:

shell python3 bot.py

This bot responds to commands sent to any Discord server it’s a part of.

By default messages must start with ;; to be recognised as a command. This can be

changed by changing COMMAND PREFIX in bot.py.

;;download model downloads the GPT-2 model and must be used to generate text.

;;generate [prompt] generates text that starts with an optional prompt.

7<https://openai.com>
8<https://openai.com/blog/better-language-models/>
9<https://www.tensorflow.org/install/gpu#software_requirements>

62

https://openai.com
https://openai.com/blog/better-language-models/
https://www.tensorflow.org/install/gpu#software_requirements

Appendix C

Source Code

I verify that I am the sole author of the programs contained in this folder, except where explicitly

stated to the contrary.

Danyaal Khan

April 21, 2020

C.1 Discord Bot

C.1.1 bot.py

1 import os
2

3 from discord.ext import commands
4

5 API_KEY_FILENAME = 'apikey.txt'
6 COMMAND_PREFIX = ';;'
7 api_key = None
8

9 # Read API key from file
10 if not api_key:
11 try:
12 with open(API_KEY_FILENAME, 'r') as file:
13 api_key = file.readline().rstrip()
14 except FileNotFoundError:
15 print(f'ERROR: API key file {API_KEY_FILENAME} not found')
16 exit(0)
17

18 client = commands.Bot(command_prefix=COMMAND_PREFIX)
19

20

21 # Load all .py files in cog folder
22 for filename in os.listdir('./cogs'):
23 if filename.endswith('.py'):

63

24 client.load_extension(f'cogs.{filename[:-3]}')
25 print(f'Loaded {filename[:-3]}')
26

27 client.run(api_key)

C.1.2 cogs/setup.py

1 import discord
2 from discord.ext import commands
3

4

5 class Setup(commands.Cog):
6

7 def __init__(self, client):
8 self.client = client
9

10 @commands.Cog.listener()
11 async def on_ready(self):
12 print('Bot is ready')
13

14

15 def setup(client):
16 client.add_cog(Setup(client))

C.1.3 cogs/basiccommands.py

1 import discord
2 from discord.ext import commands
3

4

5 class BasicCommands(commands.Cog):
6

7 def __init__(self, client):
8 self.client = client
9

10 @commands.command()
11 async def ping(self, ctx, *, arg=None):
12 print('Command ping triggered')
13 if arg:
14 await ctx.send("ERROR: Argument not allowed")
15 else:
16 await ctx.send(f'Pong! {round(self.client.latency * 1000)}ms')
17

18

19 def setup(client):
20 client.add_cog(BasicCommands(client))

64

C.1.4 cogs/utilities.py

1 import subprocess
2

3 from discord.ext import commands
4

5

6 class Utilities(commands.Cog):
7

8 def __init__(self, client):
9 self.client = client

10

11 @commands.command()
12 async def load(self, ctx, extension):
13 self.client.load_extension(f'cogs.{extension}')
14 print(f'Loaded {extension}')
15 await ctx.send(f'Loaded {extension}')
16

17 @commands.command()
18 async def unload(self, ctx, extension):
19 self.client.unload_extension(f'cogs.{extension}')
20 print(f'Unloaded {extension}')
21 await ctx.send(f'Unloaded {extension}')
22

23 @commands.command()
24 async def reload(self, ctx, extension):
25 self.client.unload_extension(f'cogs.{extension}')
26 print(f'Unloaded {extension}')
27 self.client.load_extension(f'cogs.{extension}')
28 print(f'Loaded {extension}')
29 await ctx.send(f'Reloaded {extension}')
30

31 @commands.command()
32 async def update(self, ctx, *, arg=None):
33 print('Command update triggered')
34 await ctx.send('Updating and shutting down...')
35 subprocess.call('git pull')
36 await ctx.bot.logout()
37

38 @commands.command()
39 async def stop(self, ctx, *, arg=None):
40 print('Command stop triggered')
41 await ctx.send('Shutting down...')
42 await ctx.bot.logout()
43

44

45 def setup(client):
46 client.add_cog(Utilities(client))

C.1.5 cogs/gpt2.py

1 import logging
2 import os
3

4 from discord.ext import commands

65

5

6 # Source: https://github.com/tensorflow/tensorflow/issues/27023#issuecomment-475544248
7 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Used to disable TensorFlow printing debug messages
8 # Source: https://github.com/tensorflow/tensorflow/issues/8340#issuecomment-332212742
9 logging.getLogger('tensorflow').disabled = True # Used to disable TensorFlow printing warning messages

10

11 import gpt_2_simple as gpt2
12

13 CONFIG_PATH = 'gpt2.config'
14 DEFAULT_PROMPTS_PATH = 'default_prompts.txt'
15 VALID_DEFAULT_MODELS = ['124M', '355M', '774M', '1558M']
16 DEFAULT_CONFIG = {
17 'model_name': '124M',
18 'length': '100',
19 'temperature': '0.7',
20 'top_k': '0', # How many previous words to consider when generating a new word. 0 means unlimited
21 'top_p': '0.9',
22 'include_prefix': 'True'
23 }
24 # A dictionary from argument names to a lambda that determines how to parse the string representing its value
25 CONFIG_KEY_PARSER = {
26 'model_name': lambda s: s,
27 'length': lambda i: int(i),
28 'temperature': lambda f: float(f),
29 'top_k': lambda i: int(i),
30 'top_p': lambda f: float(f),
31 'include_prefix': lambda b: b == 'True',
32 }
33

34

35 def parse_generate_arguments(arguments):
36 """
37 Convert the config into the correct format for arguments for the generate function
38 The conversion for each argument is determined by the argument's name and CONFIG_KEY_PARSER
39 :param arguments: A dictionary from an argument name to a string representing the value for that argument
40 :return: A dictionary from an argument name to the value to be passed for that argument
41 """
42 return_value = {}
43 for key in arguments:
44 return_value[key] = CONFIG_KEY_PARSER[key](arguments[key])
45

46 return return_value
47

48

49 def is_valid_config(config):
50 """
51 :param config: A string representing the name of a config
52 :return: Whether or not the config is recognised by this program
53 """
54 return config in CONFIG_KEY_PARSER
55

56

57 def is_valid_config_value(config, value):
58 """
59 :param config: A string representing the name of a config
60 :param value: A string representing a value for the config
61 :return: Whether or not the the value for a recognised config is in the correct format
62 """

66

63 try:
64 CONFIG_KEY_PARSER[config](value)
65 except ValueError or KeyError:
66 return False
67 return True
68

69

70 def read_default_prompts():
71 """
72 Read the default prompts from a file with contents in the form model_name=prompt on each line.
73 :return: A dictionary with model names as keys and the prompts as values, both being strings.
74 """
75 if os.path.exists(DEFAULT_PROMPTS_PATH):
76 with open(DEFAULT_PROMPTS_PATH, 'r') as file:
77 return {key: value for [key, value] in (line.rstrip().split('=') for line in file)}
78 else:
79 return {}
80

81

82 def write_dictionary(dictionary, path):
83 """
84 Write the contents of a dictionary to a file with contents in the form key=value on each line.
85 The keys and values must be a type that can be converted to a from a string.
86 If a file already exists in the filepath it will be overwritten.
87 :param dictionary: The dictionary to write to file
88 :param path: The path of the file to write to
89 """
90 with open(path, 'w+') as file:
91 file.truncate() # Erase contents of config file
92 for key in dictionary:
93 file.write(f'{key}={dictionary[key]}\n')
94

95

96 class Gpt2(commands.Cog):
97

98 def __init__(self, client):
99 """

100 Read the config from the file at the path CONFIG_PATH, if the config file is not in the expected format or
101 contains a config that isn't recognised, the config is loaded from the dictionary DEFAULT_CONFIG.
102

103 Initialise a TensorFlow session for gpt2 then load the GPT2 model as determined by the config.
104

105 NOTE: If the config is modified after the DEFAULT_CONFIG has been loaded it, it will be overwritten.
106 """
107 self.client = client
108 self.config = {}
109 self.load_config(False)
110 self.default_prompts = read_default_prompts()
111

112 self.sess = gpt2.start_tf_sess()
113 try:
114 gpt2.load_gpt2(self.sess, model_name=self.config['model_name'])
115 except ValueError:
116 self.sess = gpt2.reset_session(self.sess)
117 gpt2.load_gpt2(self.sess, model_name=self.config['model_name'])
118

119 @commands.command(aliases=['generate', 'gpt2'])
120 async def gpt2_generate(self, ctx, *, arg=''):

67

121 """
122 Generate a text sample from a given prompt using GPT-2.
123 The arguments and their values for the generation is determined by the config.
124 :param arg: The prompt to generate the text sample on
125 """
126 print('Command gpt2_generate triggered')
127 if gpt2.is_gpt2_downloaded(model_name=self.config['model_name']):
128 generate_args = parse_generate_arguments(self.config)
129 await ctx.send("Generating...")
130 sample = gpt2.generate(self.sess, prefix=arg, return_as_list=True, **generate_args)[0]
131 await ctx.send(sample)
132 else:
133 await ctx.send(f"ERROR: Model {self.config['model_name']} is not downloaded")
134

135 @commands.command(aliases=['set_model'])
136 async def gpt2_set_model(self, ctx, *, arg=None):
137 """
138 Set the name of the GPT-2 model in the config by setting model_name if it's a valid model name.
139 :param arg: The value to set model_name to
140 """
141 print('Command gpt2_set_model triggered')
142 if arg:
143 if arg in VALID_DEFAULT_MODELS:
144 self.update_config(model_name=arg)
145 else:
146 await ctx.send(f"ERROR: Invalid model name {arg}")
147 else:
148 await ctx.send("ERROR: Argument required")
149

150 @commands.command(aliases=['set_length'])
151 async def gpt2_set_length(self, ctx, *, arg=None):
152 """
153 Set the length of the samples produced by GPT-2 when producing samples.
154 The value represents the number of tokens (i.e. words) each produced sample will contain.
155 :param arg: The value to set length to. This must be a positive integer
156 """
157 print('Command gpt2_set_length triggered')
158 if arg:
159 try:
160 i = int(arg)
161 assert (i > 0) and (i < 1024)
162 except ValueError or AssertionError:
163 ctx.send("ERROR: Argument must be a positive integer number")
164 self.update_config(length=arg)
165 else:
166 await ctx.send("ERROR: Argument required")
167

168 @commands.command(aliases=['set_config', 'config'])
169 async def gpt2_set_config(self, ctx, *, arg=None):
170 print('Command gpt2_set_config triggered')
171 if arg:
172 configs = {key: value for [key, value] in (a.split('=') for a in arg.split(' '))}
173 for config in configs:
174 if not is_valid_config(config): # Check if the config name exists
175 await ctx.send(f"ERROR: Invalid config name {config}")
176 return
177 elif not is_valid_config_value(config, configs[config]):
178 await ctx.send(f"ERROR: Invalid config {config}={configs[config]}")

68

179 return
180 self.update_config(**configs)
181 else:
182 await ctx.send("ERROR: Argument required")
183

184 @commands.command(aliases=['download_model'])
185 async def gpt2_download_model(self, ctx, *, arg=None):
186 print('Command gpt2_download_model triggered')
187

188 if arg:
189 if arg in VALID_DEFAULT_MODELS:
190 gpt2.download_gpt2(model_name=arg)
191 await ctx.send("Model downloaded")
192 else:
193 await ctx.send("ERROR: Invalid argument")
194 else: # If no model name is provided, download the one in the config
195 model_name = self.config['model_name']
196 if model_name in VALID_DEFAULT_MODELS:
197 gpt2.download_gpt2(model_name=model_name)
198 else:
199 await ctx.send("ERROR: Invalid model_name in config")
200

201 @commands.command(aliases=['reset_config'])
202 async def gpt2_reset_config(self, ctx, *, arg=None):
203 print('Command gpt2_reset_config triggered')
204 if arg:
205 await ctx.send('ERROR: Argument not allowed')
206 else:
207 self.reset_config()
208 await ctx.send('Config reset')
209

210 @commands.command(aliases=['custom'])
211 async def gpt2_custom(self, ctx, model_name=None, *, arg=None):
212 print('Command gpt2_custom triggered')
213 if model_name:
214 if not arg:
215 if model_name in self.default_prompts:
216 arg = self.default_prompts[model_name]
217 else:
218 await ctx.send('ERROR: Prompt required')
219 return
220 generate_args = parse_generate_arguments(self.config)
221 generate_args['model_name'] = model_name
222 generate_args['include_prefix'] = False
223 sample = gpt2.generate(self.sess, prefix=arg, return_as_list=True, **generate_args)[0]
224 await ctx.send(sample)
225 else:
226 await ctx.send('ERROR: Argument required')
227

228 @commands.command(aliases=['default_prompt', 'prompt'])
229 async def gpt2_set_default_prompt(self, ctx, model_name=None, *, arg=None):
230 if model_name:
231 if arg:
232 self.default_prompts[model_name] = arg
233 write_dictionary(self.default_prompts, DEFAULT_PROMPTS_PATH)
234 else:
235 await ctx.send("ERROR: Default prompt cannot be blank")
236 else:

69

237 await ctx.send("ERROR: Missing model name")
238

239 def is_model_downloaded(self):
240 model_name = self.config['model_name']
241 return os.path.exists(f'models/{model_name}')
242

243 def update_config(self, write=True, **kwargs):
244 for key in kwargs:
245 if is_valid_config(key):
246 value = kwargs[key]
247 if is_valid_config_value(key, value):
248 self.config[key] = value
249 else:
250 print(f'ERROR: Invalid config {key}={value}')
251 else:
252 print(f'ERROR: Invalid config key {key}')
253

254 if write:
255 write_dictionary(self.config, CONFIG_PATH)
256

257 def reset_config(self, write=True):
258 self.config = DEFAULT_CONFIG.copy()
259

260 if write:
261 write_dictionary(self.config, CONFIG_PATH)
262

263 def load_config(self, write_if_default=True):
264 if os.path.exists(CONFIG_PATH):
265 with open(CONFIG_PATH, 'r') as file:
266 for line in file:
267 key, value = line.rstrip().split('=')
268 if is_valid_config_value(key, value):
269 self.config[key] = value
270 else:
271 self.reset_config(write_if_default) # Load default config instead
272 return
273 else:
274 self.reset_config(write_if_default)
275

276

277 def setup(client):
278 client.add_cog(Gpt2(client))

C.2 Article Generator

C.2.1 ArticleGenerator.py

1 import argparse
2 import os
3

4

5 def positive_int_type(value):
6 """Raise an error if the value is not a positive integer. Return it otherwise."""
7 try:

70

8 i = int(value)
9 assert i > 0

10 except (ValueError, AssertionError):
11 raise argparse.ArgumentTypeError(f'{value} is not a positive int.')
12 return i
13

14

15 def bound_positive_int_type(value, max_value):
16 """Raise an error if the value is not a positive integer and less than the max_value. Return it otherwise."""
17 try:
18 i = int(value)
19 assert i > 0
20 except (ValueError, AssertionError):
21 raise argparse.ArgumentTypeError(f'{value} is not a positive int.')
22

23 if i > max_value:
24 raise argparse.ArgumentTypeError(f'{value} is greater than than {max_value}.')
25 return i
26

27

28 def existing_filename_type(value):
29 """Raise an error if the provided value is not the name of an existing file. Return it otherwise."""
30 if not os.path.isfile(value):
31 raise argparse.ArgumentTypeError(f'{value} is not the name of a file that exists.')
32 return value
33

34

35 def not_existing_filename_type(value):
36 """Raise an error if the provided value is the name of an existing file. Return it otherwise."""
37 if os.path.isfile(value):
38 raise argparse.ArgumentTypeError(f'{value} is not the name of a file that does not exists.')
39 return value
40

41

42 def is_default_args(namespace):
43 """Return true if all of the arguments in the namespace are the default value. Return false otherwise."""
44 return (namespace.content is None) and (namespace.content_filename is None) and (namespace.filename is None) and \
45 (not namespace.print) and (namespace.num_samples == 1) and (namespace.num_words == 1023) and \
46 (namespace.output_filename is None) and (namespace.title is None) and (namespace.title_filename is None)
47

48

49 def create_parser():
50 """Create and return a parser with a usage string and all the arguments this program can take."""
51 usage_str = """
52 USAGE: python ArticleGenerator.py <options>
53 NOTE: The order of the options does not matter.
54 EXAMPLES: (1) python ArticleGenerator.py
55 - Open the ArticleGenerator GUI
56 (2) python ArticleGenerator.py -f example.txt -o sample.txt -n 3
57 OR python ArticleGenerator.py --filename example.txt --output-filename sample.txt --num_samples 3
58 - Generate 3 articles with the title and initial content specified in \'example.txt\' and
59 write each of them to \'sample1.txt\', \'sample2.txt\', and \'sample3.txt\' respectively.
60 (3) python ArticleGenerator.py -T 'Example title' -C 'Example content' -p
61 OR python ArticleGenerator.py -title 'Example title' -content 'Example content' -print
62 - Generate 1 article with the title being 'Example title' and the content being
63 'Example content' and print it to the console.
64 """
65 parser = argparse.ArgumentParser(usage_str)

71

66 parser.add_argument('-f', '--filename', dest='filename', type=existing_filename_type,
67 help='Use the title and initial content in a file with the filename specified by FILENAME. '
68 'The file should contain the title in the first line, and initial content (if any) in the '
69 'second line.')
70 parser.add_argument('-o', '--output_filename', dest='output_filename',
71 type=not_existing_filename_type,
72 help='Write the generated sample to a new file with the filename specified by OUTPUT_FILENAME. '
73 'The file must not already exist. The sample number is appended to the filename before '
74 'the extension if multiple samples are to be generated.')
75 parser.add_argument('-p', '--print', dest='print', action='store_true',
76 help='Print the generated sample(s) to console.')
77 parser.add_argument('-n', '--num_samples', dest='num_samples', default=1, type=positive_int_type,
78 help='Generate a number of samples equal to NUM_SAMPLES. It must be a positive integer. '
79 'Default: 1')
80 parser.add_argument('-w', '--num_words', dest='num_words', default=1023,
81 type=lambda i: bound_positive_int_type(i, 1023),
82 help='Generate samples with a number of words that is not greater than NUM_WORDS. It must be a '
83 'positive integer that does not exceed 1023. Default: 1023')
84 parser.add_argument('-t', '--title_filename', dest='title_filename', type=existing_filename_type,
85 help='Use the text in the first line of the file specified by TITLE_FILENAME as the title. '
86 'This will be ignored if a filename for \'--filename\' is specified.')
87 parser.add_argument('-c', '--content_filename', dest='content_filename', type=existing_filename_type,
88 help='Use the text in the first line of the file specified by CONTENT_FILENAME as the initial '
89 'content. This will be ignored if no filename for \'--title-filename\' is specified.')
90 parser.add_argument('-T', '--title', dest='title',
91 help='Use the text specified by TITLE as the title. This will be ignored if a filename '
92 'for \'--filename\' or \'--title_filename\' is specified.')
93 parser.add_argument('-C', '--content', dest='content',
94 help='Use the text specified by CONTENT as the initial content. This will be ignored if '
95 'no title for \'--title\' is specified.')
96 return parser
97

98

99 def parse_arguments():
100 """Create a parser and use it to parse the arguments given by Python, then return the parsed arguments."""
101 parser = create_parser()
102 parsed_args = parser.parse_args()
103 return parsed_args
104

105

106 if __name__ == '__main__':
107 args = parse_arguments()
108 from generator import Generator
109

110 gen = Generator.get_instance()
111

112 if is_default_args(args):
113 gen.launch_gui()
114 elif not args.output_filename and not args.print:
115 raise Exception('Output has not been set to either console or an output file.\nUse the -h argument for help.')
116 elif args.output_filename and (args.output_filename in [args.filename, args.title_filename, args.content_filename]):
117 raise Exception('Output filename cannot be the same as an input filename.\nUse the -h argument for help.')
118 elif args.filename:
119 gen.generate_from_single_file(args.filename, args.num_samples, args.print, args.output_filename, args.num_words)
120 elif args.title_filename:
121 gen.generate_from_files(args.title_filename, args.content_filename, args.num_samples, args.print,
122 args.output_filename, args.num_words)
123 elif args.title:

72

124 gen.generate(args.title, args.content, args.num_samples, args.print, args.output_filename, args.num_words)
125 else:
126 raise Exception('Input filename, input title filename, or input title have been set.\n'
127 'Use the -h argument for help.')

C.2.2 generator.py

1 import os
2

3 from gpt2handler import Gpt2Handler
4

5

6 class Generator:
7 """This class respects the singleton design pattern and facilitates communication between the other components."""
8 __instance = None
9

10 @classmethod
11 def get_instance(cls):
12 """Return the instance of this class. If it doesn't exist construct it first."""
13 if cls.__instance is None:
14 cls()
15 return cls.__instance
16

17 def __init__(self):
18 """Initialise a Generator instance if there is none. For internal use only."""
19 if Generator.__instance is None:
20 Generator.__instance = self
21 else:
22 raise Exception("Attempted initialisation of singleton class Gui.")
23

24 Gpt2Handler.get_instance() # Create instance of Gpt2Handler
25

26 @staticmethod
27 def launch_gui():
28 """Get the instance of the GUI and start it."""
29 from gui import Gui
30 Gui.get_instance().start()
31

32 @staticmethod
33 def generate_as_tuple(title, initial_content='', num_samples=1, num_words=1023):
34 """Use gpt2 to generate an article as a tuple then return it."""
35 return Gpt2Handler.get_instance().generate_as_tuple(title, initial_content, num_samples, num_words)
36

37 def generate_from_single_file(self,
38 input_filename,
39 num_samples=1,
40 print_output=False,
41 output_file=None,
42 num_words=1023):
43 """Read the title and initial content from a single file then use gpt2 to generate an article
44 and return it as a single string."""
45 with open(input_filename, 'r', errors='surrogateescape') as f:
46 file_contents = f.readlines()
47

48 title = file_contents[0].rstrip()

73

49 initial_content = '' if len(file_contents) < 2 else file_contents[1].rstrip()
50

51 return self.generate(title, initial_content, num_samples, print_output, output_file, num_words)
52

53 def generate_from_files(self,
54 title_filename,
55 content_filename=None,
56 num_samples=1,
57 print_output=False,
58 output_file=None,
59 num_words=1023):
60 """Read the title from a file and initial content from another file then use gpt2 to generate an article
61 and return it as a single string."""
62 with open(title_filename, 'r', errors='surrogateescape') as title_file:
63 title = title_file.readline().rstrip()
64

65 if content_filename:
66 with open(content_filename, 'r', errors='surrogateescape') as content_file:
67 initial_content = content_file.readline().rstrip()
68 else:
69 initial_content = ''
70

71 return self.generate(title, initial_content, num_samples, print_output, output_file, num_words)
72

73 def generate(self,
74 title,
75 initial_content=None,
76 num_samples=1,
77 print_output=False,
78 output_file=None,
79 num_words=1023):
80 """Use gpt2 to generate an article based on a given title and initial content."""
81 if not initial_content:
82 initial_content = ''
83 samples = Gpt2Handler.get_instance().generate_as_tuple(title, initial_content, num_samples, num_words)
84 samples_str = [sample[0] + '\n' + sample[1] for sample in samples]
85

86 if print_output: # Print each article to the console is specified to
87 for sample in samples_str:
88 print(sample)
89 if output_file: # Write each of the samples to their own file if a base filename is specified
90 self.write_samples_to_file(output_file, samples_str)
91

92 return samples_str
93

94 def write_samples_to_file(self, filename, samples):
95 """Write the given samples to a file. If there is more than one, write each to its own file."""
96 if len(samples) == 1:
97 self.write_sample_to_file(filename, samples[0])
98 else:
99 base, extension = os.path.splitext(filename)

100 for i in range(len(samples)):
101 new_filename = base + str(i) + extension
102 self.write_sample_to_file(new_filename, samples[i])
103

104 def write_sample_to_file(self, filename, sample):
105 """Write a given sample to a file specified by te filename."""
106 with open(filename, 'w+', errors='surrogateescape', encoding='utf-8') as f:

74

107 f.write(sample)

C.2.3 gpt2handler.py

1 import logging
2 import os
3

4 # Source: https://github.com/tensorflow/tensorflow/issues/27023#issuecomment-475544248
5 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Used to disable TensorFlow printing debug messages
6 # Source: https://github.com/tensorflow/tensorflow/issues/8340#issuecomment-332212742
7 logging.getLogger('tensorflow').disabled = True # Used to disable TensorFlow printing warning messages
8

9 import gpt_2_simple as gpt2
10 import re
11

12 DEFAULT_CONFIG = {
13 'model_name': '124M',
14 'run_name': '124M_article_generator_model', # The name of the model
15 'top_k': '0', # How many previous words to consider when generating a new word. 0 means unlimited
16 'include_prefix': 'True',
17 'return_as_list': 'True',
18 'truncate': '<|endoftext|><|startoftext|>' # Truncate the sample where it contains this substring
19 }
20 # A dictionary from argument names to a lambda that determines how to parse the string representing its value
21 GENERATE_ARGUMENT_PARSER = {
22 'model_name': lambda s: s,
23 'run_name': lambda s: s,
24 'temperature': lambda f: float(f),
25 'top_k': lambda i: int(i),
26 'top_p': lambda f: float(f),
27 'include_prefix': lambda b: b == 'True',
28 'return_as_list': lambda b: b == 'True',
29 'truncate': lambda s: s
30 }
31

32

33 class Gpt2Handler:
34 """This class respects the singleton design pattern and handles interacting with gpt2 to generate text."""
35 __instance = None
36

37 @classmethod
38 def get_instance(cls):
39 """Return the instance of this class. If it doesn't exist construct it first."""
40 if cls.__instance is None:
41 cls()
42 return cls.__instance
43

44 def __init__(self):
45 """Initialise a Gpt2Handler instance if there is none. For internal use only."""
46 if Gpt2Handler.__instance is None:
47 Gpt2Handler.__instance = self
48 else:
49 raise Exception("Attempted initialisation of singleton class Generator.")
50

51 # Start the TensorFlow session and load the model into it.

75

52 self.sess = gpt2.start_tf_sess()
53 self.run_name = DEFAULT_CONFIG['run_name']
54 self.download_model()
55 self.load_model()
56

57 def download_model(self):
58 """Download the 124M gpt2 model if it is not downloaded"""
59 if not gpt2.is_gpt2_downloaded():
60 gpt2.download_gpt2()
61

62 def load_model(self):
63 """Load the gpt2 model. If it has already been loaded, reset it first."""
64 try:
65 gpt2.load_gpt2(self.sess, run_name=self.run_name)
66 except FileNotFoundError:
67 raise Exception(f'Model is missing. Place \'{self.run_name}\' in the checkpoint folder and try again.')
68

69 def generate(self, title, initial_content='', num_samples=1, num_words=1023):
70 """Generate a sample with the specified title and initial content."""
71 initial_content = initial_content.replace('\n', ' ') # Remove newlines
72 # Convert the input into the correct format for the model
73 prefix = '<|startoftext|>\n' \
74 + ('=' * 5) + 'TITLE' + ('=' * 5) + '\n' + title + '\n' \
75 + ('=' * 5) + 'CONTENT' + ('=' * 5) + '\n' + initial_content
76

77 generate_args = self.parse_generate_arguments(DEFAULT_CONFIG)
78 samples = gpt2.generate(self.sess, prefix=prefix, nsamples=num_samples, length=num_words, **generate_args)
79

80 return samples
81

82 def generate_as_tuple(self, title, initial_content='', num_samples=1, num_words=1023):
83 """Generate a sample as a tuple in the form [title, content] with the specified title and initial content."""
84 return [self.sample_to_tuple(sample) for sample in
85 self.generate(title, initial_content, num_samples, num_words)]
86

87 @staticmethod
88 def sample_to_tuple(sample):
89 """Take a sample and return a list where the first value is the title and the second value is the content."""
90 # Remove the startoftext token and the title header
91 no_title_header = sample.split('<|startoftext|>\n' + ('=' * 5) + 'TITLE' + ('=' * 5) + '\n')[1]
92 # Remove any remaining tokens using a regex that matches substrings that start with '<|' and end with '|>'
93 no_tokens = re.sub('<\\|[ˆ|>]*\\|>', '', no_title_header)
94 # Replace multiple adjacent spaces with a single space
95 no_repeating_spaces = re.sub(' +', ' ', no_tokens)
96 # Convert the sample into a list consisting of the title and sample without the sample header
97 split_sample = no_repeating_spaces.split('\n' + ('=' * 5) + 'CONTENT' + ('=' * 5) + '\n')[:2]
98 return split_sample
99

100 @staticmethod
101 def parse_generate_arguments(arguments):
102 """Convert generate arguments from string to the correct respective types using GENERATE_ARGUMENT_PARSER."""
103 return_value = {}
104 for key in arguments:
105 return_value[key] = GENERATE_ARGUMENT_PARSER[key](arguments[key])
106

107 return return_value

76

C.2.4 gui.py

1 import tkinter as tk
2 from tkinter import filedialog
3 from tkinter import messagebox
4

5 from generator import Generator
6

7

8 class Gui:
9 """This class respects the singleton design pattern and is responsible for the GUI of the program."""

10 __instance = None
11

12 # Constants
13 MIN_WINDOW_WIDTH = 600
14 MIN_WINDOW_HEIGHT = 300
15 ROOT_PAD_X = 2
16 ROOT_PAD_Y = 2
17 HOME_PAD_X = 2
18 HOME_PAD_Y = 2
19

20 @classmethod
21 def get_instance(cls):
22 """Return the instance of this class. If it doesn't exist construct it first."""
23 if cls.__instance is None:
24 cls()
25 return cls.__instance
26

27 def __init__(self):
28 """Initialise a Gui instance if there is none. For internal use only."""
29 if Gui.__instance is None:
30 Gui.__instance = self
31 else:
32 raise Exception("Attempted initialisation of singleton class Gui.")
33

34 # Initialise the instance variables for this object
35 self.root = None
36

37 # Home
38 self.home = None
39 self.title_option = None
40 self.title_text = None
41 self.initial_content_option = None
42 self.initial_content_text = None
43 self.number_of_samples = None
44 self.words_per_sample = None
45

46 self.create_gui()
47

48 def start(self):
49 """Launch the gui window."""
50 self.root.mainloop()
51

52 def create_gui(self):
53 """Create the gui window and populate it with the relevant components."""
54 # Window
55 self.root = tk.Tk()

77

56 self.root.title("Article Generator")
57 self.root.minsize(width=self.MIN_WINDOW_WIDTH, height=self.MIN_WINDOW_HEIGHT)
58 self.root.resizable(False, False)
59

60 self.create_home()
61

62 def create_home(self):
63 """Create the home screen and populate it with the relevant components."""
64 self.home = tk.LabelFrame(self.root, padx=self.ROOT_PAD_X, pady=self.ROOT_PAD_Y, borderwidth=0,
65 highlightthickness=0)
66 self.home.pack()
67

68 # Title
69 # Label
70 title_label = tk.Label(self.home, text="Title:")
71 title_label.grid(row=0, column=0, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
72 # Option Menu
73 self.title_option = tk.StringVar(value='Text')
74 title_option_menu = tk.OptionMenu(self.home, self.title_option, 'Text', 'File',
75 command=self.on_title_option_menu_update)
76 title_option_menu.grid(row=0, column=1, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
77 # Text Entry
78 self.title_text = tk.Text(self.home, width=50, height=1, font=("Helvetica", 10))
79 self.title_text.grid(row=0, column=2, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
80 # Do nothing when the user tries to enter a newline character
81 self.title_text.bind('<Return>', lambda x: 'break')
82

83 # Initial Content
84 # Label
85 initial_content_label = tk.Label(self.home, text="Initial Content:")
86 initial_content_label.grid(row=1, column=0, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
87 # Dropdown
88 self.initial_content_option = tk.StringVar(value='Text')
89 initial_content_option_menu = tk.OptionMenu(self.home, self.initial_content_option, 'Text', 'File',
90 command=self.on_initial_content_option_menu_update)
91 initial_content_option_menu.grid(row=1, column=1, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
92 # Text Entry
93 self.initial_content_text = tk.Text(self.home, width=50, height=10, font=("Helvetica", 10), wrap=tk.WORD)
94 self.initial_content_text.grid(row=1, column=2, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
95

96 # Number of Samples
97 # Label
98 number_of_samples_label = tk.Label(self.home, text="Number of Samples:")
99 number_of_samples_label.grid(row=2, column=0, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)

100 # Spinbox
101 self.number_of_samples = tk.IntVar(value=1)
102 number_of_samples_spinbox = tk.Spinbox(self.home, from_=1, to=99, width=9, textvariable=self.number_of_samples)
103 number_of_samples_spinbox.grid(row=2, column=1, columnspan=2, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y,
104 sticky=tk.W)
105

106 # Words Per Sample
107 # Label
108 words_per_sample_label = tk.Label(self.home, text="Max Words Per Sample:")
109 words_per_sample_label.grid(row=3, column=0, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y, sticky=tk.W)
110 # Spinbox
111 self.words_per_sample = tk.IntVar(value=1023)
112 words_per_sample_spinbox = tk.Spinbox(self.home, from_=1, to=1023, width=9, textvariable=self.words_per_sample)
113 words_per_sample_spinbox.grid(row=3, column=1, columnspan=2, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y,

78

114 sticky=tk.W)
115

116 # Generate Button
117 generate_button = tk.Button(self.home, text='Generate', command=self.submit)
118 generate_button.grid(row=4, column=1, columnspan=2, padx=self.HOME_PAD_X, pady=self.HOME_PAD_Y)
119

120 def submit(self):
121 """Submit the text in the fields to gpt2 and launch a window displaying the generated articles."""
122 try:
123 number_of_samples = int(self.number_of_samples.get()) # Ensure the number of samples is an int
124 assert number_of_samples > 0 # Ensure the number of samples is greater than 0
125 except (ValueError, AssertionError): # Display a dialog box to the user to notify them of the error
126 messagebox.showerror('Invalid Value', 'Number of samples must be a positive number.')
127 return
128

129 try:
130 words_per_sample = int(self.words_per_sample.get()) # Ensure the words per sample is an int
131 # Ensure the words per sample is between 1 and 1023 (inclusive)
132 assert (words_per_sample > 0) and (words_per_sample < 1024)
133 except (ValueError, AssertionError): # Display a dialog box to the user to notify them of the error
134 messagebox.showerror('Invalid Value', 'Words per sample must be a whole number between 1 and 1023.')
135 return
136

137 title = self.title_text.get('1.0', tk.END).rstrip() # Retrieve the text from the title field
138 if len(title) == 0: # Ensure text has be inputted in the title field
139 messagebox.showerror('Invalid Title', 'Title must not be blank.')
140 return
141

142 # Retrieve the text from the initial content field
143 initial_content = self.initial_content_text.get('1.0', tk.END).rstrip()
144

145 # Generate samples based on the user input
146 samples = Generator.get_instance().generate_as_tuple(title, initial_content, number_of_samples,
147 words_per_sample)
148

149 # Display the generated samples
150 sample_viewer = Gui.SampleViewer(samples)
151 sample_viewer.start()
152

153 def on_title_option_menu_update(self, value):
154 """Update the contents of the title text based on the respective option menu value."""
155 self.on_option_menu_update(value, self.title_option, self.title_text)
156

157 def on_initial_content_option_menu_update(self, value):
158 """Update the contents of the initial content text based on the respective option menu value."""
159 self.on_option_menu_update(value, self.initial_content_option, self.initial_content_text)
160

161 def on_option_menu_update(self, value, option_menu, text_field):
162 """Update the contents of the text field based on the new value of the option menu.
163 If 'File' is selected the user will be prompted to select a file to source the new text from."""
164 if value == 'Text':
165 text_field.config(state='normal')
166 else:
167 if len(text_field.get('1.0', tk.END)) > 1:
168 response = messagebox.askyesno('Continue?', 'The content of the file will overwrite the contents of the'
169 ' field.\nWould you like to continue?')
170 if not response: # If the user responded with No
171 option_menu.set('Text')

79

172 text_field.config(state='normal')
173 return
174

175 filename = filedialog.askopenfilename(initialdir='/', title='Open',
176 filetypes=(('Text Files (*.txt)', '*.txt'),
177 ('All Files (*.*)', '*.*')))
178 if filename:
179 with open(filename, 'r', errors='surrogateescape') as f:
180 title = f.readline().rstrip()
181 text_field.config(state='normal')
182 text_field.delete('1.0', tk.END) # Clear the contents of the field
183 text_field.insert('1.0', title)
184 text_field.config(state='disabled')
185 else: # If the user did not select a file
186 option_menu.set('Text')
187 text_field.config(state='normal')
188

189 class SampleViewer:
190 """This inner class is responsible for displaying articles to the user."""
191 # Constants
192 WINDOW_PAD_X = 2
193 WINDOW_PAD_Y = 2
194 TEXT_FRAME_PAD_X = 2
195 TEXT_FRAME_PAD_Y = 2
196

197 def __init__(self, samples):
198 """Initialise the instance variables for this object, then create and populate the sample viewer window."""
199 self.window = None
200 self.left_button = None
201

202 self.title = samples[0][0]
203 self.samples = [sample[1] for sample in samples]
204 self.right_button = None
205

206 self.title_text = None
207 self.sample_text = None
208 self.current_sample_index = 0
209

210 self.text_frame = None
211

212 self.create_window()
213

214 def create_window(self):
215 """Create and populate the sample viewer window."""
216 self.window = tk.Toplevel()
217 self.window.title(self.title)
218 self.window.resizable(False, False)
219 self.window.grab_set()
220

221 self.create_buttons()
222 self.update_buttons()
223

224 self.create_text_frame()
225 self.update_sample()
226

227 def create_text_frame(self):
228 """Create and populate the frame responsible for displaying the text."""
229 self.text_frame = tk.LabelFrame(self.window, borderwidth=0, highlightthickness=0)

80

230 self.text_frame.grid(row=0, column=0, columnspan=2, padx=self.WINDOW_PAD_X, pady=self.WINDOW_PAD_Y)
231

232 self.title_text = tk.Text(self.text_frame, width=100, height=1, font=("Helvetica", 10),
233 padx=self.TEXT_FRAME_PAD_X, pady=self.TEXT_FRAME_PAD_Y)
234 self.title_text.insert(tk.END, self.title)
235 self.title_text.configure(state='disabled')
236

237 self.title_text.grid(row=0, column=0)
238

239 self.sample_text = tk.Text(self.text_frame, width=100, height=20, font=("Helvetica", 10), wrap=tk.WORD,
240 padx=self.TEXT_FRAME_PAD_X, pady=self.TEXT_FRAME_PAD_Y, state='disabled')
241 self.sample_text.grid(row=1, column=0)
242

243 def create_buttons(self):
244 """Create the buttons and populate them in the relevant window."""
245 self.left_button = tk.Button(self.window, text='<', command=self.previous_sample)
246 self.left_button.grid(row=1, column=0, padx=self.WINDOW_PAD_X, pady=self.WINDOW_PAD_Y, sticky=tk.E)
247 self.right_button = tk.Button(self.window, text='>', command=self.next_sample)
248 self.right_button.grid(row=1, column=1, padx=self.WINDOW_PAD_X, pady=self.WINDOW_PAD_Y, sticky=tk.W)
249

250 def previous_sample(self):
251 """Change the current sample displayed to the previous sample."""
252 if self.current_sample_index == 0:
253 messagebox.showerror('Error', 'First sample reached. No previous sample exists.')
254

255 self.current_sample_index -= 1
256 self.update_sample()
257 self.update_buttons()
258

259 def next_sample(self):
260 """Change the current sample displayed to the next sample."""
261 if self.current_sample_index == (len(self.samples) - 1):
262 messagebox.showerror('Error', 'Last sample reached. No next sample exists.')
263

264 self.current_sample_index += 1
265 self.update_sample()
266 self.update_buttons()
267

268 def update_sample(self):
269 """Update the currently displayed sample to the currently selected sample."""
270 self.sample_text.configure(state='normal')
271 self.sample_text.delete("1.0", "end")
272 self.sample_text.insert(tk.END, self.samples[self.current_sample_index])
273 self.sample_text.configure(state='disabled')
274

275 def update_buttons(self):
276 """Disable/enable the buttons depending on the relative position of the currently selected sample."""
277 if self.current_sample_index == 0:
278 self.left_button.config(state='disabled')
279 else:
280 self.left_button.config(state='normal')
281

282 if self.current_sample_index == (len(self.samples) - 1):
283 self.right_button.config(state='disabled')
284 else:
285 self.right_button.config(state='normal')
286

287 def start(self):

81

288 """Launch the gui window."""
289 self.window.mainloop()

82

	Introduction
	Project Aims
	Own Research Contributions Summary

	Background
	Language Models
	Sequence-to-sequence Models
	Transformer Models
	gpt-2-simple
	Discord.py
	Datasets
	Existing Tools

	Requirements & Specification
	Requirements
	Specification

	Design
	Article Generator Architecture
	Discord Bot Architecture
	Article Generator GUI
	Article Generator CLI
	Discord Bot Setup
	Discord Bot UI

	Implementation
	Article Generator
	Discord Bot

	Evaluation
	Finetuning the Article Generator Model
	Limitations
	Own Research Contributions

	Legal, Social, Ethical and Professional Issues
	The Black Box Problem
	Fake News and Propaganda

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Extra Information
	User Guide
	GPT2 Article Generator
	GPT2 Bot

	Source Code
	Discord Bot
	Article Generator

